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Abstract

This paper describes a sequential solution to dense non-rigid structure from mo-
tion that recovers the camera motion and 3D shape of non-rigid objects by processing
a monocular image sequence as the data arrives. We propose to model the time-varying
shape with a probabilistic linear subspace of mode shapes obtained from continuum me-
chanics. To efficiently encode the deformations of dense 3D shapes that contain a large
number of mesh vertexes, we propose to compute the deformation modes on a down-
sampled rest shape using finite element modal analysis at a low computational cost. This
sparse shape basis is then grown back to dense exploiting the shape functions within a
finite element. With this probabilistic low-rank constraint, we estimate camera pose and
non-rigid shape in each frame using expectation maximization over a sliding window
of frames. Since the time-varying weights are marginalized out, our approach only es-
timates a small number of parameters per frame, and hence can potentially run in real
time. We evaluate our algorithm on both synthetic and real sequences with 3D ground
truth data for different objects ranging from inextensible to extensible deformations and
from sparse to dense shapes. We show the advantages of our approach with respect to
competing sequential methods.

1 Introduction
Recovering the 3D shape of rigid scenes along with the camera motion from monocular
image sequences, or rigid Structure from Motion (SfM), is one of the most active areas in
computer vision. In the last decade, SfM methods have made significant progress to simul-
taneously recover camera motion and shape in real-time for a sparse set of salient points
[16, 20] and even to perform dense reconstructions [21] from video sequences acquired with
a hand-held camera. On the other hand, Non-Rigid Structure from Motion (NRSfM) methods
can simultaneously estimate camera motion and 3D reconstruction of deformable objects
from monocular video. Most approaches model deformations assuming a low-rank shape
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[5, 8, 9, 10, 34] or trajectory basis [4, 15]. Typically these NRSfM methods can only recon-
struct a sparse set of salient points. Moreover, they process all the frames in the sequence
simultaneously in batch after acquisition has taken place, preventing them from online real-
time performance. However, recently NRSfM methods have been extended both to dense
shape reconstruction [12] and to sequential processing using either sparse [1, 23] or dense
tracks [3]. While [3] exhibits an advantageous accuracy vs. computational cost trade-off, the
computation time to compute the shape basis may become prohibitive for some dense cases.

In this paper, we present a sequential solution to solve monocular NRSfM. Our approach
recovers camera pose and the non-rigid 3D shape of deforming surfaces including large
deformations and displacements and it is valid for sparse and dense data. We use a linear
subspace of mode shapes with a Gaussian prior on each mode shape to encode the non-
rigid 3D shape. Our online system begins estimating a rest shape from the first few frames
where continuum mechanics is applied to compute a shape basis. To efficiently encode the
deformations of dense 3D models, the dense rest shape is down-sampled to a sparse mesh
where modal analysis is applied at a low computational cost. The sparse mode shapes are
then grown back to dense. With this low-rank shape basis, the system only optimizes the
camera pose and a measurement noise per frame by using Expectation Maximization (EM)
over a sliding temporal window of frames. Since the basis weights in the subspace are
marginalized out, we only estimate a small number of parameters per frame, and hence our
system can potentially run in real time. We show our approach is also adequate for highly
extensible surfaces without any 3D training data prior.

2 Related Work
NRSfM is an inherently ill-posed problem unless additional a priori knowledge about the
shape or the camera motion is considered. In [8] was proposed a low-rank shape constraint
as an extension of rigid factorization algorithm [32] to estimate non-rigid shape and camera
motion from monocular images. They modeled a time-varying shape as a linear combina-
tion of an unknown shape basis under orthography. Although this prior has proved to be a
powerful constraint, it is insufficient to solve the inherent ambiguities in NRSfM. Most ap-
proaches have required to use additional priors such as temporal smoothness [5, 10, 34, 35],
smooth-time trajectories [4, 15], spatial smoothness [12, 34] and inextensibility constraints
[35]. Piecewise approaches have obtained accurate results estimating local reconstructions
to enforce a single smooth surface [26, 30].

Hierarchical Bayesian priors have not been extensively used in NRSfM. These priors
allow to marginalize out hidden data that does not have to be explicitly computed, thus
simplifying the optimization problem and avoiding overfitting. Hierarchical Bayesian priors
were used in NRSfM to model deformation weights in a low dimensional subspace based
on Principal Component Analysis (PCA) [33] estimating the remaining model parameters
by EM. These priors were also used in template-based methods, where a Gaussian Process
Latent Variable Model was employed to learn a prior over the deformations of local surfaces
patches [27]. The unknown shape is encoded as a linear combination of deformation modes
learned on-the-fly for a relatively small deformation [33], or in advance from a relatively
large set of training data [27]. However, the deformations of real-world shapes can need
larger values of rank, and hence the reconstruction becomes underconstrained for methods
that learn deformation modes on-the-fly [33]. This ambiguity can be reduced using a pre-
defined shape basis. In [1, 2], hierarchical priors were used to model nodal forces in a
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physics-based deformation model combining an Extended Kalman Filter (EKF) with the
Finite Element Method (FEM) to predict non-rigid displacements.

While sequential real-time SfM [16, 21] solutions exist for rigid scenes, online estimation
of non-rigid shape from monocular images remains as a challenging problem. Recently,
sequential formulations to NRSfM have emerged [1, 3, 23]. An online solution based on
Bundle Adjustment (BA) over a sliding window was proposed in [23]. Though efficient,
it did not achieve real-time performance. The first real-time online solution to NRSfM was
proposed in [1, 2] by combining an EKF with FEM to estimate a small set of salient points
which belong to a deformable object.

In [3] a sequential system was proposed that combines BA with a low-rank physics-
based model. The time-varying shape is modeled as a linear combination of a shape basis
computed by applying modal analysis over a shape at rest. The non-rigid modes of the basis
can be classified by frequency in two families. The first one is affordable to compute even
in the dense case but it can only encode bending out-of-plane deformations. For scenes
with stretching in-plane deformations, a few stretching modes have to be included to have a
representative basis. Unfortunately, computing these dense modes may become prohibitive
–sometimes unfeasible– in terms of computational and memory requirements. To solve this
limitation, in this paper we propose to increase the density of some initial sparse deformation
modes obtained applying modal analysis to a down-sampled shape basis. This allows to
easily compute all the frequency spectrum while keeping the computational cost low.

3 Physics-Based Deformation Model
A common way to model non-rigid 3D shapes in computer vision consists in representing
them as a linear combination of shape basis [3, 5, 8, 9, 19, 23, 27, 34]. The problem com-
plexity can be reduced using dimensionality reduction techniques such as PCA [7, 19] or
modal analysis [3, 24, 28]. We do not use non-rigid 3D training data to compute a shape
basis, but instead just consider that a rest shape can be estimated to apply modal analysis.
Let us consider a 3D object at rest S̄ of p points, with its coordinates arranged as a 3p-vector:

S̄ =
[
S̄>1 . . . S̄>j . . . S̄>p

]>
=
[
X1 Y1 Z1 . . . X j Yj Z j . . . Xp Yp Zp

]>
. (1)

In order to model the dynamic behavior of this object under external actions, we can
use the discretized version of the Lagrangian dynamics equation Mü+Ku = r where M
and K are 3p×3p mass and stiffness matrices respectively, numerically evaluated by FEM
[6]. u and r are 3p× 1 vectors of 3D nodal displacements and external forces respectively,
and derivatives with respect to time are abbreviated by superposed dots, i.e. ü(t) ≡ d2u(t)

dt2 .
Recently, [3] proposes to model the stiffness matrix employing a combination of plane-stress
and Kirchoff’s plate [1], and the mass matrix by means of mass conservation to compute a
mode shape basis. These modes can be computed as the undamped free vibrations response
of the structure S̄ solving the generalized eigenvalue problem in ω2 [6]:

Kψk = ω
2
k Mψk (2)

where the tuple
{

ψk,ω
2
k

}
,k = 1, . . . ,3p are mode shapes and vibration frequencies respec-

tively. In this work, we use the stiffness and the lumped mass matrices, as proposed in [3], to
compute a mode shape basis. A closed-form expression to approximate any 3D displacement
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field can be expressed by means of a transformation matrix S ∈ R3p×r that concatenates r
mode shapes, and an r-vector of weights γ to obtain a low-rank representation as:

u = Sγ =
[
ψ1 . . . ψk . . . ψr

][
γ1 . . . γk . . . γr

]>
. (3)

Although we can directly obtain mode shapes solving the eigenvalue problem Eq. (2)
for any scene, this problem quickly becomes difficult to solve for dense maps, especially if
stretching modes are necessary. To achieve the stretching modes in the frequency spectrum,
it is necessary to know a priori the frequency of these modes or to previously compute all
bending modes [3]. It is our main contribution to resolve this limitation by computing the
eigenvalue problem in a sparse mesh and then the density of the deformation modes is grown
–exploiting the shape functions within a finite element– to obtain mode shapes in the dense
mesh. This growth of modes permits easily to solve dense problems and drastically to re-
duce the computational and memory requirements for computing both bending or stretching
modes.

(a) (b) (c) (d) (e)
Figure 1: Growth-of-modes methodology. (a): Reference image plane to compute optical
flow. (b): Dense 2D tracking of p points. (c): Subsample of dense shape into q points (green
points). (d): Delaunay triangulation for sparse mesh. (e): Active search to match every point
in the sparse mesh. Best viewed in color and with zooming.

3.1 Growth of Modes: Efficient Computation for Dense Cases
We propose to exploit the shape functions used to define the displacement field within a
finite element [6]. Therefore, we solve the eigenvalue problem for q << p scene points
obtaining S∗ ∈ R3q×r basis shapes and then computing S ∈ R3p×r for p points using the
shape functions. First, we subsample the scene points to convert the p-dimensional map
–dense mesh– (Fig. 1 (b)) into q-dimensional map –sparse mesh– (Fig. 1 (c-d)). Then, each
point in the dense mesh must be matched with an element of the sparse mesh (Fig. 1 (e)). To
find out an element in sparse mesh 4

(
S̄aS̄bS̄c

)
with nodal labels {a,b,c} per point S̄ j, we

suggest an active search computing several cross products over a 2-dimensional space:

2

∑
τ=0

τ+1∈mod(3)

χκ

(−−→
S̄τ S̄ j×

−−−−→
S̄τ S̄τ+1

)
=

1 if
(−−→

S̄τ S̄ j×
−−−−→
S̄τ S̄τ+1

)
∈ κ

0 if
(−−→

S̄τ S̄ j×
−−−−→
S̄τ S̄τ+1

)
/∈ κ

=

{
3 if S̄ j ∈4

(
S̄0S̄1S̄2

)
≤ 2 if S̄ j /∈4

(
S̄0S̄1S̄2

)
(4)

where the labels {a,b,c} ≡ {0,1,2} are renumbered and χκ represents a step function with
κ ≡ [0,∞). S̄ j is inside triangle element 4

(
S̄aS̄bS̄c

)
when all cross products are non-

negative. Note that this 2-dimensional space is a dimensional reduction of the shape at
rest, and hence it can be both the projection on the image plane after estimating it and the
projection on the reference image plane (Fig. 1 (a)) used to compute optical flow [12, 13]
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before estimating it. When the active search is completed, we need to compute its natural
coordinates (ξ j,η j) within the element4

(
S̄aS̄bS̄c

)
. First, we transform from the global sys-

tem to a local system 4
(
S̄L

a S̄L
b S̄L

c
)

defined on the plane of each triangle element and then
obtaining the natural coordinates as:[

ξ j
η j

]
=

[[
S̄L

b S̄L
c

]
−
[
S̄L

a ⊗1>2
]]−1[

S̄L
j − S̄L

a

]
, (5)

where 12 is a vector of ones and ⊗ indicates the Kronecker’s product. The 3D displacement
can be obtained using the linear shape functions Nl(ξ j,η j) ≡

[
Nl

1 Nl
2 Nl

3
]

(for more details
over these functions, see [6]) within the element. The 3D displacement for every mode
shape can be computed applying S∗a , S∗b and S∗c are 3× r displacement vectors for mode
shapes basis corresponding to the triangle element {a,b,c} which S̄ j belongs to. Finally, S j
is placed in rows 3 j−2 through 3 j in S:

S j =
[
Nl(ξ j,η j)⊗ I3

][
S∗a S∗b S∗c

]>
. (6)

4 Sequential NRSfM
We use a linear subspace shape model where the shape basis results from modal analysis to
represent the non-rigidly deforming scene. Our aim is to sequentially estimate camera mo-
tion and time-varying 3D shape from uncalibrated 2D point correspondences. This section
is devoted to describing the details of our sequential approach to NRSfM.

4.1 Probabilistic Non-Rigid Shape Model
Let us consider a 3D structure S f of p points onto image frame f , the orthographic projection
w f into vectors can be expressed as:

w f =
[
u f 1 v f 1 . . . u f j v f j . . . u f p v f p

]>
= G f S f +T f +N f (7)

where G f = Ip⊗R f with Ip a p× p identity matrix, R f = ΠQ f are the first two rows of a
full rotation matrix Q f and Π is the 2×3 orthographic camera matrix. Due to orthographic
projection, the depth coordinate of the translation vector cannot be resolved. Considering
this ambiguity, we model 2D translations t f defined as T f = 1p⊗ t f with 1p a vector of
ones and t f = R f d f where d f is a 3×1 translation vector. Finally, N f is a 2p-dimensional
zero-mean Gaussian noise process vector to model the noise in image tracks. The noise
vector for a generic point j is n f j ∼N

(
0;σ2I

)
with variance of the measurements σ in each

dimension. We model the non-rigid 3D shape at each frame S f as a linear combination of
a mean shape S̄ and r deformation modes S with the corresponding weight vector γ f . The
non-rigid structure at frame f considering Eq. (3) can be written defining a concatenation

matrix of the shape at rest and the mode shapes as S̃ =
[
S̄ S
]

and γ̃ f =
[
1 γ>f

]>
as:

S f = S̄+u f = S̄+Sγ f = S̃ γ̃ f . (8)

We propose to replace the previous linear subspace modal-analysis based model with a
probabilistic model using a Gaussian prior on each shape in the subspace inspired by prob-
abilistic PCA [25, 31, 33]. The weight coefficients γ f are modeled with a Gaussian prior
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distribution with zero-mean γ f ∼ N (0;Ir). These deformation weights γ f become latent
variables that can be marginalized out and are never explicitly computed. Employing this
Gaussian prior over γ f , the weights for each shape are similar to each other being the non-
rigid shape distribution S f ∼ N

(
S̄;SS>

)
, producing smooth deformations with respect to

rest shape. Note that using this prior, we do not need to add additional temporal smoothness
priors to penalize strong variations, avoiding tuning regularization weights [3, 12, 23, 26].

By assuming Gaussian noise over the shape and the observations, the distribution to be
estimated over the projected points w f is also Gaussian and is equivalent to solving the
NRSfM problem. Our second contribution is to propose an online EM-based algorithm to
solve maximum likelihood estimation as the data arrives in this latent variable problem:

w f ∼N
(

G f S̄+T f ;G fSS>G>f +σ
2I
)
. (9)

4.2 Online Expectation Maximization Algorithm
We propose an online version of the EM algorithm –similar to EM for factor analysis [14]–
over a sliding window on the lastW frames as proposed in [3, 23] to perform BA. We denote
Θ f ≡ {R f , t f ,σ

2} the set of model parameters to estimate, γ f as hidden data and {w f ,γ f }
as complete data. Given the observable data w f−W+1: f over the sliding temporal window
of frames with indexes f−W+1: f , we estimate the model parameters over all frames in the
current window denoted as Ŵ . The joint probability of w over sliding window, assuming
samples independent and identically distributed, may be computed considering the Gaussian
distribution per frame Eq. (9) as p

(
wŴ |GŴ ,TŴ ,σ2

)
= ∏

f
i= f−W+1 p

(
wi|Gi,Ti,σ

2
)
.

The EM algorithm estimates iteratively until convergence the likelihood alternating be-
tween two steps: E-step and M-step. In the E-step, we compute the posterior distribution
over latent variables given the measurements and the current model parameters on the slid-
ing window using Woodbury’s matrix identity [36] as:

p(γŴ |wŴ ,ΘŴ) ∼
f

∏
i= f−W+1

N
(
βi
(
wi−GiS̄−Ti

)
;Ir−βiGiS

)
, (10)

βi = S>G>i σ
−2
(

I−σ
−2GiS

(
Ir +σ

−2S>G>i GiS
)−1
S>G>i

)
. (11)

We just need to compute on-the-fly by updating the model parameters when a new
observation is available the expectations µ f ≡ E

[
γ f

]
= β f

(
w f −G f S̄−T f

)
and φ f ≡

E
[
γ f γ>f

]
= Ir−β f G fS+µ f µ>f for each frame f on the sliding window.

In the M-step, the expected value of log-likelihood function is optimized by replacing the
latent variables by their expected values to update the model parameters. We update motion
variables maximizing likelihood with respect to parameters Θ holding hidden distribution
fixed:

A(Θi) = argmin
Θi

E

[
−

f

∑
i= f−W+1

log p(wi|Θi)

]
=

argmin
Gi,Ti,σ2

1
2σ2

f

∑
i= f−W+1

E
[
‖wi−Gi

(
S̄+Sγ i

)
−Ti‖2

2

]
+ pW log

(
2πσ

2) . (12)

This function can not be optimized in closed-form to compute a global optimum and par-
tial M steps are necessary. The Θ vector is individually updated in closed-form, except for
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camera rotation. Similar to batch-mode EM [33], the noise variance and the translation vec-
tor can be updated in sequential-mode processing considering µ̃ i =E

[
γ̃ i
]

and φ̃ i =E
[
γ̃ iγ̃
>
i
]
:

σ
2 =

1
2pW

f

∑
i= f−W+1

(
‖wi−Ti‖2−2(wi−Ti)

>GiS̃ µ̃ i + tr
(
S̃>G>i GiS̃φ̃ i

))
, (13)

ti =
1
p

p

∑
j=1

(
wi j−RiS̃ j µ̃ i

)
. (14)

However, the camera rotation Qi is subject to orthonormality constraints, and a closed-
form update is not possible. Rotation matrices lie exactly on a smooth manifold based on
the orthogonal group SO(3), where it is possible to generalize a Riemannian-Newton algo-
rithm [11, 29]. We use Riemannian manifold optimization to update the rotation matrices.
First, we rewrite the expected negative log-likelihood function Eq. (12) dropping the depen-
dence on σ2 as:

A(Qi) = argmin
Qi∈SO(3)

f

∑
i= f−W+1

p

∑
j=1

E
[
‖wi j−ΠQiS̃ j γ̃ i− ti‖2

F
]
, (15)

where Qi ∈ SO(3) and its tangent ∆Qi ∈ TQ(SO(3)) can be expressed as ∆Qi = Qi [δ ]×
with [δ ]× the skew-symmetric matrix. On SO(3), the geodesic at Qi in the tangent di-
rection can be expressed by means of the Rodrigues’ rotation formula Q

(
δ̂ ,α

)
= Q∆Q =

Q
(

I3 +
[
δ̂

]
×

sin(α)+
[
δ̂

]2

×
(1− cos(α))

)
, where [δ ]× ∈ so(3) is the Lie algebra of SO(3)

group and [δ ]× = α

[
δ̂

]
×

. This explicit formula for geodesics is necessary to compute the

gradient dA(∆Qi) and the Hessian HessA(∆Qi ,∆Qi) of the cost function Eq. (15) along the
geodesics on the manifold. Finally, the optimal update rotation vector along the geodesic
is computed as ∆Qi = Qi [δ ]× where δ is estimated as δ = −H−1g. The Hessian matrix H
and the gradient vector g can be obtained applying dA(∆Qi) and HessA(∆Qi ,∆Qi) over a
standard algorithm for optimization on manifolds [17, 29].

4.3 Initialization
Our method assumes that the rest shape can be estimated similarly to [3, 23, 26]. We use a
rigid factorization algorithm [18] on a few initial frames (nr mostly rigid frames) to recover
it. Our rest shape is a tuple (P,E) where P is a finite set of p nodes and E of m triangular
elements –over q points for dense cases– obtained by means of a Delaunay triangulation [6]
on the image plane or on the reference image for dense cases [12, 13]. To initialize the
model parameters for a new incoming frame, the camera pose is initialized as Ri = Ri−1 and
ti = ti−1, while the latent variables as E [γ i] = E

[
γ i−1

]
.

5 Experimental Results
We present experimental results on both synthetic and real sequences, providing both qual-
itative and quantitative evaluation where we compare our approach with respect to state-of-

the-art methods1. We use the error metric defined as e3D = 1
f ∑

f
i=1
‖Si−SGT

i ‖F
‖SGT

i ‖F
[3] where ‖·‖F

is the Frobenius norm, Si is the 3D reconstruction and SGT
i is the ground truth.

1Videos of the experimental results can be found on website http://webdiis.unizar.es/~aagudo
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5.1 Synthetic Data

We propose a synthetic dense sequence of 109 frames where we simulate an elastic ribbon
deformation with p = 2,263 points observed by an orthographic camera. The elastic ribbon
is modeled with a non-linear Yeoh hyperelastic material [37] valid for large deformations.
This sequence was generated with the simulation tool Abaqus, where material properties,
boundary conditions and nodal forces are necessary to compute the deformation. In contrast,
our shape basis is computed using linear elasticity only valid for small deformations and the
material properties, boundary conditions and external forces are unknown.

We use our EM-FEM algorithm with W = 3 for this challenging 43% stretching de-
formation computing the mode shapes with a sparse mesh of q = 78 points and applying
a growth of modes to p = 2,263 points. We obtain an error e3D of 2.95% when we use 5
stretching modes, 1.47% with 20 and 0.79% with 40. Applying the MP algorithm [22], the
error e3D is 17.72% with 15 shape basis. Fig. 2 shows our 3D reconstruction with r = 40 for
a few selected frames including where the stretching is maximum, as well as a qualitatively
comparison with respect to ground truth. While this problem would incur a high computa-
tional cost to compute stretching mode shapes [3], in our algorithm it is negligible since we
reduce the dimension of the eigenvalue problem from 2,263×3 to 78×3.

Figure 2: Dense stretching ribbon sequence. Reconstruction of the dense 2,263 point
ribbon at frames #20, #60 and maximum deformation at #109. Shape at rest is displayed with
a black mesh. Top: Ground truth deformation with a magenta mesh. Bottom: Renderings
and thin lines for our reconstruction. Sparse mesh in thick lines. Best viewed in color.

5.2 Real Data

In this section, we evaluate our method on a challenging dense dataset of motion capture
(MoCap) [13] with p = 9,622, corresponding to a flag waving in the wind. We present a
comparison with respect to competing sequential NRSfM methods, considering the methods:
SBA [23] and BA-FEM [3]. We exactly use for each method the same w1:nr to compute the
shape at rest by means of a rigid factorization algorithm [18].

To validate the scalability of our method, we also propose a p = 594 sparse version of
this dense flag sequence which is the result of the subsampling process. We apply the growth
of modes to this sparse sequence. We show quantitative 3D reconstruction for both the sparse
and the dense flag sequence in Table 1 and qualitative results in Fig. 3. Both BA-FEM [3] and
our EM-FEM outperform the SBA [23] method in terms of accuracy and efficiency for both
cases. Although SBA [23] estimates the mode shapes on-the-fly –with smaller initialization
computation time only for shape at rest– it is not able to overcome the mode shapes for this
sequence. Note that the three methods use exactly the same initialization, although both BA-
FEM [3] and our EM-FEM exploit the shape at rest to compute a mode shape basis. The error
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e3D obtained with BA-FEM [3] is smaller in the dense case than the sparse case due to the
accuracy of dense mode shapes estimation –without growth of modes–. However, applying
our EM-FEM, the error is smaller for sparse case due to the approximation of growth of
modes with little reduction in accuracy. Note that the initialization computation time for the
sparse problem is the same using both approaches since we do not use a growth of modes.
Applying this method to the dense case, the computation time increment is negligible –
0.03 sec– with respect to the sparse case, and it is dominated for the rigid factorization
step with 25.67sec, similar to SBA [23]. Moreover, our approach is more efficient in the
sequential estimation, with a better scalability in the number of modes. We can conclude that
our method outperforms the sequential state-of-the-art in terms of accuracy and efficiency.
Although our method is implemented in unoptimized Matlab code without parallelization
over a commodity computer Intel core i7@2.67 GHz, the results show a low computational
cost per frame and it could potentially run in real time.

Algorithm Sparse Flag Dense Flag [13]
e3D(%) in / op (sec) e3D(%) in / op (sec)

SBA [23] 7.10(114∗) 0.58/82.32 13.48(114∗) 25.67/895
BA-FEM [3] 3.72(10) 19.50/1.96 3.50(10)‡ 300/75‡

3.49(40) 19.50/24.83 3.29(25)‡ 300/416‡

EM-FEM 3.28(10) 19.50/1.53 3.41(10) 44.62/62
2.81(40) 19.50/2.28 3.08(25) 44.62/68

Table 1: Quantitative comparison for MoCap sequence. We show error e3D for sequential
methods SBA [23], BA-FEM [3] and for our method EM-FEM. In both cases, we show in
brackets the number of shapes in the basis. We also show computation time for initialization
in and optimization process per frame op. ‡: value reproduced from [3]. ∗: SBA [23] reports
the rank r, we detail 3r in brackets because it is equivalent to the number of weights in both
BA-FEM [3] and our EM-FEM. In all cases,W = 5.

Figure 3: Flag MoCap sequence: 3D Reconstruction for a few frames with red dots. Top:
Sparse 594 points flag. Ground truth is overlaid with a black mesh and black circles. Bot-
tom: Dense 9,622 points flag. Best viewed in color and with zooming.

Finally, we evaluate our approach using dense 28,332 tracks provided by [13] to show a
qualitative evaluation on the face sequence with respect to [12], where a subject is perform-
ing natural expressions and moving his head. In Fig. 4 we show few frames with our 3D
reconstruction using r = 30 modes and W = 3. We compute mode shapes with q = 1,442
points and applying a growth of modes to p = 28,332 points.
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Figure 4: Face sequence: dense 3D point cloud estimation. Top: Selected frames #17,
#43, #55, #75, #100 and #121 with 3D reprojected mesh. Middle: Original viewpoint.
Bottom: General view.

6 Conclusions and Future Work
This paper presents an online system that takes NRSfM closer to real-time operation. We
use a physics-based linear subspace model with hierarchical priors to encode a time-varying
shape without a learning step. To compute the dense shape basis, we have proposed a growth
of modes that uses a small set of points to obtain a sparse shape basis that is later extended to
dense at quite affordable cost. Camera motion and non-rigid shape are estimated on-the-fly
within a low-cost EM framework as the data arrives. Experimental results on challenging
sequences show that our approach can sequentially estimate from isometric to extensible
deformations. Our future work is to incorporate feature tracking and outlier detection into a
single process.
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