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Abstract

We propose a new tracking method capable of handling occlusions and non-constant
target motion. This is achieved using multiple simple motion models, learned at differ-
ent temporal scales and combined to capture possibly complex motion patterns. These
motion models are learned online in a computationally inexpensive manner. Reliable
recovery of tracking after occlusions is achieved by extending the bootstrap particle fil-
ter to propagate particles at multiple temporal scales, guided by the simple models. In
complex environments targets can display changes in direction or speed unaccounted for
by standard polynomial motion models. To demonstrate the generality of our framework
and accommodate these changes, the proposed method is also applied to a more flexible,
two-stage motion model. Extensive experiments have been carried out on both publicly
available benchmarks and new video sequences. Results reveal that the proposed method
successfully handles occlusions and a variety of rapid changes in target motion.

1 Introduction
Visual tracking is one of the most important unsolved problem in computer vision. Though
it has received much attention, no framework has emerged which can robustly track across
a broad spectrum of real world settings. Two major challenges for a visual tracker are vari-
ations in target motion and occlusions. In some applications, e.g. video surveillance and
sports analysis, a target may undergo a variety of motions and be occluded at the same time.

While many solutions to the occlusion problem have been proposed, it remains unsolved.
Some methods [17, 32] propose an explicit occlusion detection and handling mechanism.
Reliable detection of occlusion is difficult in practice, and often produces false alarms. Some
methods, based on adaptive appearance models [15, 28], use statistical reasoning to handle
occlusions indirectly, by learning how appearance changes over time. Occlusions can, how-
ever, contaminate the appearance models, as these methods use blind update strategies.

Rapidly varying motion can be addressed using a single motion model with a large pro-
cess noise. This approach requires large numbers of particles and is sensitive to background
clutter. Alternative approaches include efficient proposals [23], or hybrid techniques with
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2 KHAN ET AL.: A MULTIPLE MOTION MODEL TRACKER

(a) Multiple motion models are learned at multiple
model-scales from the recent history of estimated states
at time t, and are used to predict possible target locations
at T prediction-scales.

(b) At time t, there are T different sets of predictions
(left). One motion model is selected from each set be-
longing to t−k at time t (middle), and used to propagate
particles from t−k to time t (right). A total of T motion
models therefore generate particles at time t.

Figure 1: Graphical illustration of the proposed method.

hill climbing methods [22] to allocate particles near to the modes of the posterior. These
approaches can, however, be computationally expensive.

We propose a new tracking method handling occlusion and non-constant motion. We
believe that the most reliable way to recover from occlusion is to employ a flexible prediction
method which estimates target location at temporal scales similar to the length of likely
occlusions. To achieve this, motion models are learnt at multiple model-scales and used to
predict possible target locations at multiple prediction-scales. The model-scale is the length
of the sequence of recently estimated target states over which the motion model is learnt. The
prediction-scale is the temporal distance, measured in frames of the input image sequence,
over which a prediction is made. Reliable recovery of tracking after occlusions is achieved
by extending the bootstrap particle filter to propagate particles to multiple prediction-scales,
using models learnt at multiple model-scales. Fig. 1 summarises the approach.

The proposed framework places no restriction on the individual motion models used, and
is shown here applying both polynomial motion models and the two-stage model of [13]. The
two-stage model is more robust to acceleration, deceleration, and rapid changes in the direc-
tion of motion [13]. Our framework makes several contributions. Inspired by the success of
multiple appearance model methods [14, 15], we introduce the concept of multiple motion
models learned at different model-scales. These capture possibly complex motion patterns,
and predict target location over multiple prediction-scales. Occlusion is handled implicitly,
without using strong appearance models or an explicit occlusion detection mechanism.

2 Related Work
Occlusion handling may be direct or indirect. Indirect approaches can be divided into two
categories. The first is based on adaptive appearance models which use statistical analysis
[4, 15, 28] to reason about occlusion. The appearance models can, however, become corrupt
during longer occlusions due to the lack of an intelligent update mechanism. Approaches
in the second category divide the target into patches and either use a voting scheme [1] or
robust fusion mechanism [10] to produce a tracking result. These can, however, fail when
the number of occluded patches increases.

Some approaches address the occlusion of specific target types. Lim et al. [19] propose a
human tracking system based on learning dynamic appearance and motion models. A three-
dimensional geometric hand model was proposed by Sudderth et al. [30] to reason about
occlusion in a non-parametric belief propagation tracking framework. Other researchers [6,
7] attempt to overcome occlusion using multiple cameras. As most videos are shot with a
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single camera, and multiple cameras bring additional costs; this is not a generally applicable
solution. Grabner et al. [8] and Yang et al. [31] employ spatio-temporal context to tackle the
occlusion problem, but both methods rely on the tracking of auxiliary objects.

The explicit identification of occlusions requires a robust occlusion detection method.
Collins et al. [32] presented a combination of local and global mode seeking techniques.
Occlusion detection was achieved with a naive threshold based on the value of the objective
function used in local mode seeking. Lerdsudwichai et al. [17] detected occlusions by using
an occlusion grid with a drop in similarity value. This approach can produce false alarms
because the required drop in similarity could occur due to natural appearance variation.

When target motion is difficult to model, a common solution is to use a single motion
model with a large process noise. Examples of such models are random-walk (RW) [22,
26] and nearly constant velocity (NCV) [27, 29]. Increased process noise demands larger
numbers of particles to maintain accurate tracking, which increases computational expense.

One approach to the increased variance in estimation caused by high process noise is to
make an efficient and informed proposal distribution. Okuma et al. [23] designed a proposal
distribution that mixed hypotheses generated by an AdaBoost detector and a standard autore-
gressive motion model to guide a particle filter based tracker. Kristan et al. [13] formulated a
two-stage dynamic model to improve the accuracy and efficiency of bootstrap particle filters.
The method fails when the target exhibits frequent spells of non-constant motion.

Several attempts have been made to learn motion models offline. Isard and Blake [11] use
a hardcoded finite state machine (FSM) to manage transitions between a small set of learned
models. Madrigal et al. [20] guide a particle filter based target tracker with a motion model
learned offline. Pavlovic et al. [24] switch between motion models learned from motion
capture data. Their approach is application specific, in that it learns only human motion. An
obvious limitation of offline learning is that models can only be used to track the specific
class of targets for which they are trained.

When tracking, knowledge of target motion can reduce the search space. To capture the
ways a target can move, an interacting multiple model (IMM) approach based on Kalman [18]
and particle filters [21] has been proposed. Here, each tracker employs a different motion
model, and results are combined based on their performance. The particle filter IMM is not
computationally feasible due to the calculation of large numbers of likelihood functions.

Our approach differs from previous work in using the recent history of the target to learn
multiple simple motion models, whose predictions are pooled over multiple temporal scales
to define the search space of a single particle filter. It is thus an online learning approach
not restricted to any specific target class. A novel selection criterion determines the motion
model adopted at each time point, without need for a hardcoded FSM.

3 Problem Formulation

Our aim is to find the best state of the target at time t given observations up to t. State at time
t is given by Xt = {Xx

t ,X
y
t ,X s

t },where Xx
t ,Xy

t , and X s
t represent the x,y location and scale of

the target, respectively. The posterior probability p(Xt |Y1:t) given the state Xt at time t, and
observations Y1:t up to t, is estimated using the Bayesian formulation

p(Xt |Y1:t) ∝ p(Yt |Xt)
∫

p(Xt |Xt−1)p(X1:t−1|Y1:t−1)dXt−1, (1)

Citation
Citation
{Grabner, Matas, Gool, and Cattin} 

Citation
Citation
{Yang, Wu, and Hua} 2009

Citation
Citation
{Yin and Collins} 

Citation
Citation
{Lerdsudwichai, Abdel-Mottaleb, and Ansari} 2005

Citation
Citation
{Naeem, Pridmore, and Mills} 

Citation
Citation
{Perez, Vermaak, and Blake} 2004

Citation
Citation
{Pernkopf} 2008

Citation
Citation
{Shan, Tan, and Wei} 2007

Citation
Citation
{Okuma, Taleghani, Freitas, Little, and Lowe} 

Citation
Citation
{Kristan, Kova£i£, Leonardis, and Per²} 2010

Citation
Citation
{Isard and Blake} 

Citation
Citation
{Madrigal, Rivera, and Hayet} 

Citation
Citation
{Pavlovic, Rehg, and Maccormick} 

Citation
Citation
{Li and Bar-Shalom} 1993

Citation
Citation
{McGinnity and Irwin} 2000



4 KHAN ET AL.: A MULTIPLE MOTION MODEL TRACKER

where p(Yt |Xt) denotes the observation model and p(Xt |Xt−1) is a motion model. The best
state of the target X̂t is obtained using Maximum a Posteriori (MAP) estimate over the Nt
weighted particles which approximate p(Xt |Y1:t),

X̂t = argmax
X(i)

t

p(X(i)
t |Y1:t) f or i = 1, ...,Nt , (2)

where X(i)
t is the ith particle. An accurate value of this MAP estimate depends on an accurate

estimation of posterior probability in eq.(1). This becomes difficult when the target is oc-
cluded or exhibits dynamics which are not covered by commonly used motion models such
as the RW or the NCV model.

4 Proposed Method

4.1 A Multiple Motion Model Framework
To reliably recover the target after occlusion, we introduce the concept of motion models
learnt at a range of model-scales, and contribute a simple but powerful extension of the
bootstrap particle filter. The proposed concept and extension are general, and applicable to
any particle filter. The core idea is to combine sufficient particle sets at each time-point that at
least one set will be valid, and allow recovery from occlusion. A valid particle set represents
an accurate estimation of the posterior probability from some previous time-point, predicted
by a motion model generated over an appropriate model-scale and unaffected by occlusion.

4.1.1 Learning Simple Motion Models

A simple motion model is characterized by a polynomial function of order d. It is learned
at a given model-scale separately on the x-location and y-location of the target’s state. This
learning also considers how well each state is estimated in a given sequence and how far it
is from the most recently estimated state [13]. For instance, a model of order 1, learned at
model-scale m, predicts target x-location at time t thus

x∼t = β
m
o +β

m
1 t +N (0,σ2

m), (3)

where β1 is the slope, βo the intercept, and N (0,σ2
m) is a zero-mean Gaussian distribution

with variance σ2
m. Model parameters can be learnt inexpensively via weighted least squares.

4.1.2 Model Set Reduction

A set of learned motion models at time t is represented by M j=1,...,|Mt |
t , where |.| is the

cardinality of the set. If the cardinality is G, and each model predicts target location l(x∼,y∼)
at T prediction-scales, then at any given time-step there will be G×T predictions. These
are not all equally accurate. Thus, to reduce the chance of false positive predictions, the
most suitable motion model Rk

t is selected from a set belonging to the kth previous time-step
according to the criterion:

Rk
t = argmax

l j,k
t

p(Yt |l j,k
t ) j = 1, ...G and k = 1, ...T (4)

where j,k denotes the jth motion model from kth previous time-step, and p(Yt |l j,k
t ) measures

the visual likelihood that the target is located at the predicted location l j,k
t .
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4.1.3 Propagation of particles

In the bootstrap particle filter [3], the posterior probability at time t is estimated by a set of
particles X(i)

t and their weights ω
(i)
t ,{X(i)

t ,ω
(i)
t }N

i=1, such that all the weights in the particle set
sum to one. At time t+1, the particles are resampled to form an unweighted representation of
the posterior {X(i)

t ,1/N}N
i=1. They are then propagated using the motion model p(Xt+1|Xt)

to approximate a prior distribution p(Xt+1|Yt). Finally, they are weighted according to the
observation model p(Yt+1|Xt+1), approximating the posterior probability at t +1.

Here the particle set {X(i)
t ,ω

(i)
t }N

i=1 at t is propagated not only to t +1 but to the next T
time-steps. At a given time t, the selected motion model Rk

t belonging to the kth previous
time-step will propagate particles belonging to the kth previous time-step as follows1:

Xx
t,k = Xx

t−k +g(Rk
t )k+N (0,σ2

x k), (5)

where Xx is the horizontal part of the target state, g() indicates the slope of the model, and
N (0,σx) is a Gaussian distribution with zero-mean and σ2

x variance.
Propagation from the last T time-steps, generates T particle sets at time t. All particles

are weighted using the observation model p(Yt |Xt) to approximate the posterior probability
p(Xt |Y1:t). If the target was occluded for less than or equal to T − 1 frames, it may be
recovered by a set of particles unaffected by the occlusion. The proposed framework is
summarised in Algorithm 1.

Algorithm 1 Multiple Motion Model tracker
Input: The resampled sets of particles after estimation of posterior from T previous time-
steps {X(i)

t−k,
1
N }

N
i=1 where k = 1, ....,T .

Output: Best state X̂t at time t.
f or k = 1 to T

f or j = 1 to G
- Measure visual likelihood p(Yt |l j,k

t ), where l j,k
t denotes the predicted location at

time t by jth motion model from kth previous time-step.
end
- Select the most suitable motion model Rk

t at time t using eq.(4).
- Propagate the particle set from kth previous time-step {X(i)

t−k,
1
N }

N
i=1 using eq.(5) by

taking the slope of selected motion model Rk
t to time t.

end
- Assign weights to all the particles to approximate the posterior {X(i)

t ,ω
(i)
t }N×T

i=1 .
- Calculate the best state X̂t using eq.(2).
- Retain first N particles after the resampling step.
- Learn simple motion models using the recent history of estimated states.

4.2 Improving the Simple Motion Model
Targets can exhibit motions - accelerations, decelerations, and rapid changes in direction -
which are not well-represented by the widely used polynomial motion models. We therefore

1To demonstrate the basic idea of the proposed method, eq.(5) is used for Xx and Xy part of the target state, and
for X s a simple RW model with variance σ2

s k has been used. Though the method can be easily extended to learn
simple motion models for recently estimated scales, and eq.(5) can be used to propagate X s part of the target state.
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6 KHAN ET AL.: A MULTIPLE MOTION MODEL TRACKER

also apply our multiple motion model framework to a more flexible, two-stage motion model
[13]. The state of the target now includes an additional internal velocity term v in both the x
and y directions. The flexible motion model with state Xt can be written as [13]:

Xt = ΦXt−1 +Γv̂t−1 +Wt ,

Φ =

[
1 1−e−∆tβ

β

0 e−∆tβ

]
,Γ =

[
∆tβ−1+e−∆tβ

β

e−∆tβ

]
.

(6)

where Φ is the state-transition matrix, Γ is the discrete time gain through which the rigid
velocity v̂t−1 enters the system, ∆t is the time-step length, and Wt is the white noise sequence.
For details, see [13], page 4. The correlation time parameter β can be adjusted to tune the
properties of the two-stage model.

With the inclusion of the two-stage motion model in the proposed method, we have two
ways to estimate target location: the rigid prediction ľt = (x̌t , y̌t) and the flexible estimate
l̂t = (X̂x

t , X̂
y
t ). From the selected polynomial motion models Rk=1:T

t available at time t, the
prediction of the model with the highest visual likelihood score is taken as the rigid prediction
ľt = (x̌t , y̌t). The flexible motion model propagates particles from the kth previous time-
step to time t by taking the slope of the selected polynomial motion model as the rigid
velocity. After propagation from T previous time-steps, the flexible estimate of the target
state X̂t = {X̂x

t , X̂
y
t , X̂ s

t } is computed using eq.(2). Now the normalized location of the target
n̂t is calculated by reducing the variance of the flexible estimate of the target location l̂t =
(X̂x

t , X̂
y
t ) by fusing it with the rigid prediction ľt of the target location:

n̂t =
ľtψľt + l̂tψl̂t

ψľt +ψl̂t

, (7)

where ψľt is the visual likelihood score that the target is located at ľt , and ψl̂t is the visual
likelihood score that the target is located at l̂t .

5 Experimental Results
The proposed method addresses the occlusion problem using motion information only. The
appearance model used in all experiments was, therefore, the colour histogram used in [25].
Model-scales ranged from 2 to 5, the simple motion model was linear. Four simple motion
models were used. The β parameter of the two-stage model was fixed at 10, giving high
weight to the rigid velocity v̂, estimated by the simple motion model, and very low weight to
the internal velocity v. As a result, it becomes strongly biased towards the predicted location,
but still allows some deviation. We compared the proposed method to three baseline and five
state-of-the-art trackers. The first two baseline trackers, TRW and TNCV , were colour based
particle filters from [25], but use different motion models. The first tracker TRW used a
random-walk model while the second tracker TNCV used a nearly constant velocity model.
The third baseline tracker TT S was the two-stage dynamic model proposed by [13]. The
parameter K in [13] was set to 5. The state-of-the-art trackers are L1-APG(L1 tracker using
Accelerated Proximal Gradient Approach) [5]),VTD(Visual Tracking Decompostion [15]),
IVT(Incremental Subspace Visual Tracker [28]), FragT(Fragment-based Tracker [1]), and
SemiBoost(Semisupervised boosting Tracker [9]). The samples used for L1-APG, VTD,
and IVT were 640. The parameters of the competing methods were adjusted to produce
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(a) TU-Cro]25 (b) TU-Cro]48 (c) TU-Cro]108 (d) car]168 (e) car]191 (f) car]231
Figure 2: Tracking through multiple partial occlusions. Groundtruth(purple), TMM2(cyan),
FragT(white), SemiBoost(yellow), L1-APG(blue), VTD(red) and IVT(green).

the best tracking performance. The supplementary material contains list of parameters of
different trackers used.

Nine video sequences were used. Six are publicly available (TUD-Campus [2], TUD-
Crossing [2], PETS 2001 Dataset 12, Person [16], car [12], and PETS 2009 Dataset S23)
and three are our own (squash, ball1, and ball2). All involve frequent short and long term
occlusions (partial and full) and/or variations in target motion.

5.1 Quantitative and Qualitative Evaluation
Table 1 summarises tracking accuracy achieved over the 7 sequences. TMMP denotes the
proposed method applied over a first-order polynomial motion model, and TMM2 the use of
the two-stage model. TMMP outperformed competing methods in most sequences, because
it efficiently allocated particles to overcome occlusions. VTD, and IVT performed badly
because inappropriate appearance model updates during longer occlusions causes drift from
which they cannot recover. Although SemiBoost uses explicit re-detection once the target is
lost, its accuracy was low due to false positive detections. FragT and L1-APG produced the
lowest error in the car, and TUD-Crossing sequences, respectively, which involved partial
occlusions (Fig. 2). FragT uses a patch based target representation, and L1-APG employs a
robust minimization model influenced by an explicit occlusion detection mechanism. In con-
trast, TMMP and TMM2 use a very simple, generic appearance model, and no explicit occlusion
handling mechanism.

Table 1: Tracking accuracy in the presence of occlusion. Mean centre location error in pixels is given, averaged
over all frames of all videos showing occlusions. Each tracker was run five times and the results were averaged.
The best results are marked in bold. T denotes the prediction-scales, and N is the number of particles propagated
from t− k to t in our proposed method. N is fixed at 20, and Nt is the total number of particles accumulated at time
t in our proposed method. The number of particles used in baseline trackers was equal to Nt .

Sequence TNCV TRW TT S IV T L1-APG V T D Semi FragT TMMP TMM2 T Nt = N×T
ball2 91 71 125 104 71 66 78 106 30 27 32 640
TUD-Camp 141 119 31 186 100 186 61 112 19 18 8 160
TUD-Cross 43 75 106 41 2 63 62 5 30 28 25 500
PETS 2001 43 131 112 76 60 83 114 67 20 23 32 640
Person 90 33 95 83 103 85 177 84 9 8 20 400
PETS 2009 75 37 56 80 81 94 29 10 8 7 14 280
car 37 43 87 81 31 47 38 16 26 25 20 400

Tracking accuracy was also measured when the target was occluded and underwent mo-
tion variation at the same time (Table 2). TMMP produced higher accuracy than the other

2PETS 2001 Dataset 1 is available from http://ftp.pets.rdg.ac.uk/
3PETS 2009 Dataset S2 is available from http://www.cvg.rdg.ac.uk/PETS2009/
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8 KHAN ET AL.: A MULTIPLE MOTION MODEL TRACKER

Table 2: Accuracy through simultaneous motion variation and occlusion. Mean centre location error (pixels) is
given. Each tracker was run five times and the results were averaged.

Sequence TNCV TRW TT S IV T L1-APG V T D Semi FragT TMMP TMM2 T Nt = N×T
squash 27 52 41 122 60 21 68 35 14 12 5 100
ball1 74 87 98 211 124 69 67 210 17 17 14 280

methods. By propagating particles over multiple prediction-scales, TMMP efficiently allo-
cates particles to reduce the search space while covering a wide range of target dynamics.
VTD performed well in squash sequence because it combines two motion models of dif-
ferent variances to form multiple basic trackers which search a large state space efficiently.
SemiBoost produced second best accuracy in ball1, as appearance varies little throughout
the sequence.

Note that TMM2 performs only slightly better than TMMP. In general, TMMP produces
an accurate approximation of the likely target path. When the target deviates considerably
from its predicted location, TMM2 is a little more accurate; the flexible motion model spreads
the particles more widely to compensate. For instance in Fig. 3, when the player suddenly
changes direction, TMM2 demonstrates greater tracking accuracy.

(a) # 16 (b) # 16 (c) # 17 (d) # 17 (e) # 18 (f) # 18
Figure 3: TMM2(cyan) is more accurate than TMMP(white) when faced with sudden changes
in direction. TMMP produces concentrated sets of particles while the flexible motion model
in TMM2 provides more spread.

Tracking is particularly difficult when the time between consecutive occlusions is small.
In TUD-Campus, the tracked person suffers two occlusions only 17 frames apart (Fig. 4a).
VTD, L1-APG, and IVT failed due to incorrect appearance model updates. FragT drifted
when the target was completely occluded, and SemiBoost could not re-locate the target re-
liably in the surrounding clutter; it relies completely on the detector once the target is lost.
TMM2 recovers the target after each occlusion. Video surveillance data often requires tracking
through partial and/or full occlusions. In the PETS 2001 Dataset 1 sequence (Fig. 4b) the
target (car) first stays partially occluded for a considerable time, and is then completely oc-
cluded by a tree. TMM2 successfully re-acquires the target. Occlusions of varying lengths are
common in real-world tracking scenarios. In the person sequence, a person moves behind
several trees and is shot with a moving camera. As shown in Fig. 5, competing methods lose
the target after first occlusion (Frame # 238), while TMM2 shows robustness in coping with
varying lengths of occlusions. Fig. 6 gives cumulative position errors (over time) obtained
from TMM2, VTD, L1-APG, IVT, FragT, and SemiBoost.

The ability of TMM2 to cope with simultaneous occlusion and non-constant target motion
was tested by making two challenging sequences: squash and ball1. In these sequences,
the target accelerates, decelerates, changes direction suddenly, and is completely occluded
multiple times. Fig. 7 illustrates tracking results. TMM2 provided more accurate tracking than
the other methods on both sequences. This is because the efficient allocation of particles at
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(a) TUD-Campus]12]29]45 (b) PETS’01]36]91]178

Figure 4: Tracking results in a crowded (a) and a surveillance environment (b).
Groundtruth(purple), TMM2(cyan), FragT(white), SemiBoost(yellow), L1-APG(blue),
VTD(red) and IVT(green).

(a) # 238 (b) # 303 (c) # 335 (d) # 414 (e) # 458 (f) # 470
Figure 5: Tracking results with occlusions of different lengths. Groundtruth(purple),
TMM2(cyan), FragT(white), SemiBoost(yellow), L1-APG(blue), VTD(red) and IVT(green).

Figure 6: Cumulative errors associated with FragT, SemiBoost, VTD, L1-APG, IVT, and
TMM2.

(a) Squash]74 (b) Squash]190 (c) Squash]274 (d) ball1]284 (e) ball1]365 (f) ball1]796
Figure 7: Tracking results in case of motion variations and frequent occlusions.
Groundtruth(purple), TMM2(cyan), FragT(white), SemiBoost(yellow), L1-APG(blue),
VTD(red) and IVT(green).



10 KHAN ET AL.: A MULTIPLE MOTION MODEL TRACKER

multiple prediction-scales allows covering a wider range of target motion.
Experimental results show the robust performance of the proposed framework during

occlusions. However, the proposed method can fail when faced with very long duration
occlusions. In addition, it can distract to a visually similar object after occlusion, if the state
estimations during the period of occlusion are poor.

6 Conclusion
We propose a tracking framework that combines motion models learned over multiple model-
scales and applied over multiple prediction-scales to handle occlusion and variation in target
motion. The core idea is to combine sufficient particle sets at each time-point that at least
one set will be valid, and allow recovery from occlusion and/or motion variation. These
particle sets are not, however, simply spread widely across the image: each represents an
estimation of the posterior probability from some previous time-point, predicted by a motion
model generated over an appropriate model-scale.

The framework can be applied to any motion and appearance model pair. Simple, fixed
appearance models have been used here for generality, and polynomial and two-stage mo-
tion models have been employed to demonstrate the flexibility of the approach. The pro-
posed method has shown superior performance over state-of-the-art trackers in challenging
tracking environments. That there is little difference between results obtained using polyno-
mial and two-stage motion models suggests that this high level of performance is due to the
framework, rather than its components.
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