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Abstract

In this paper we propose a multi-scale Azimuthal Projection Distance Image scheme
for analysing 3D texture and use it in classifying wrinkles and pores on high resolution
facial normal maps. Azimuthal Projection Distance Images (APDI) have been widely
used for mapping normals’ orientation to scalar values on a tangent plane. The multi-
scale scheme we introduce computes APDIs at different resolutions of the normal map.
We propose a geodesic-based method of scaling normal maps and modify the original
formulation of the APDI which only take into consideration polar orientation. We finally
apply the approach in classifying facial skin conditions (large pores, wrinkles). Local
Binary Patterns feature are extracted from the multi-scale APDI pyramid and put into a
Multi-Layer Perceptron. The results we achieve are promising even though the dataset
used is limited.

1 Introduction
3D surface data have been widely used in Pattern Recognition for extracting 3D invariant

features [1, 6, 15]. These have been mostly used as key-points for various computer vision
tasks such as 3D Object Recognition, 3D Saliency Detection, Mesh Alignment etc. Recent
advances in 3D surface recovery allow capture of surface details with great precision and
resolution. This opens new opportunities in machine vision and pattern recognition. One of
these is the possibility of analysing texture directly from dense 3D surface data.

3D surface texture analysis has not seen as much interest as 2D texture analysis, although
there are some studies that address the problem. Smith et al proposed a method for comput-
ing a co-occurrence matrix for normal maps [12]. Sandbach et al computed Local Binary
Patterns on depth maps and Azimuthal Projection Distance Images of normal maps to clas-
sify 3D facial action units [11]. Peyre and Mallat proposed an interesting bandelets approach
for compressing 3D surface geometry [9]. Other studies have used 3D patterns in analysing
skin conditions. Warr et al demonstrated the considerable value added by augmenting the
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Figure 1: Algorithm overview

classical 2D ABCD (Asymmetry, Border, Color and Diameter) features with 3D pattern
analysis in classifying benign and malignant Melanomas [2]. Koh et al used a 3D imaging
system to quantify skin surface roughness and acne. Warr et al used first and second order
differential forms of skin surface relief to describe skin lesion disruption.

In this paper, we investigate a multi-resolution Azimuthal Projection Distance Image
scheme for analysing texture from high resolution facial normal maps. We propose a geodesic-
based method for scaling normal maps and modify the original formulation of the Azimuthal
Projection Distance Image in order to take into account the azimuthal orientation of the nor-
mals. We finally test the proposed approach by classifying skin conditions such as wrinkles
and large pores from highly detailed facial normal maps.

In the first section, we recall the notion of Normal Map, give an introduction of Rieman-
nian geometry on Normal Map and introduce our reformulation of the Azimuthal Projection
Distance Image. In the second section present our Multi-resolution APDI algorithm. And
finally we give in the last section our experimental results.

2 Background

In this paper we investigate methods for analysing 3D texture from high resolution normal
maps. Even though normal maps are represented with a 2D RGB image, classical linear 2D
texture analysis methods can not be applied directly. Each pixel of a normal map represents
a normal’s orientation and therefore they do not belong to a linear space. Summing two
normals does not result in another normal as the result will not be a unit vector.

The approach considered in this paper is to project the normals onto a tangent Euclidean
plane where linear texture analysis methods can be applied. We use Riemannian differential
geometry elements to formulate our geodesic-based normal map rescaling. In this section,
we present the concept of normal map, provide an overview of some Riemannian geome-
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try elements, give a short introduction to Azimuthal Projection Distance Image and finally
present our modification of its original formulation.

2.1 Normal Map
A normal map, also known as a needle-map, is an RGB image that represents surface’s
orientations by storing, in each of its pixel channels, a Cartesian component of a surface
normal. Typically, the Red channel contains the X-component, the Green channel contains
the Y-component and the Blue channel contains the Z-component. Generally the three chan-
nels are coded in the RGB image with a range of [0;255] and in such cases, they should be
rescaled into the range [-1;1] before further usage. Figure 2 gives an example of a facial
normal-map from the ICT3DRFE dataset [13]; the RGB visualisation gives an indication of
how the different normals are oriented.

Figure 2: Example of a facial normal-map [13]

Normal maps are generally produced by photometric stereo techniques. They are widely
used in computer graphics to enhance the level of detail of a low resolution geometry mesh,
either by integrating them and producing a higher resolution mesh [8] [7] or by using bump-
mapping techniques at rendering time [7]. Normal maps can be expressed in the object-space
(which is the same space where the mesh geometry is expressed) or in the tangent-space.
Generally, in the later case, a transformation of either the mesh or the normal-map between
the two spaces is necessary before integrating them.

In the rest of the paper, we will define a normal-map as:

n(i, j)0≤ j≤H
0≤i≤W

With W and H respectively the normal-map width and the height. n(i, j) will denote the
normal value of the pixel (i, j) .

Riemannian Geometry on Normal Maps
A Riemannian manifold M is a space equipped, at each point µ ∈ M, with a tangent

bundle T µM where a differentiable inner product is defined for any vectors x, y ∈M [14].
Two functions are defined for projections between the manifold and tangent spaces:

Citation
Citation
{Stratou G., Ghosh A., Debevec P. and Morency L.} 2011

Citation
Citation
{Stratou G., Ghosh A., Debevec P. and Morency L.} 2011

Citation
Citation
{Nehab D., Rusinkiewicz S., Davis J. and Ramamoorthi R.} 2005

Citation
Citation
{Ma W.C., Hawkins T., Peers P., Chabert C.F., Weiss M. and Debevec P.} 2007

Citation
Citation
{Ma W.C., Hawkins T., Peers P., Chabert C.F., Weiss M. and Debevec P.} 2007

Citation
Citation
{Xavier P.} 



4A. SECK, H. DEE, B. TIDDMAN: MULTI-RESOLUTION APDI FOR 3D TEXTURE ANALYSIS

• The Logarithm function maps points from M to T µM

• The Exponential function maps points form T µM to M

We assume that the normals lie in a Riemannian manifold. This allow us to use the
Logµ function to project them onto the tangent plane at µ , where linear operations can be
performed, and Expµ to project them back in the normal space (Figure 2.1). In this paper
we chose µ = z (i.e. a uniform tangent parallel to the image plane).

O

μ
TμM

Expμ(N) 

N

Figure 3: Logarithm and Exponential Chart on the Unit Sphere

2.2 Azimuthal Projection Distance Image
The Azimuthal Projection Distance Image is an extension of Azimuthal Equidistant Pro-

jection (used in Geography and Earth Science) to 3D image processing. It aims to project
normals onto points in an Euclidean plane. The projection image is generated by taking
each pixel as the absolute distance of the projected point from the centre of projection [11].
For the rest of this paper we will use the acronym "APDI" to refer to Azimuthal Projection
Distance Image.

Formally, if n(i, j)0≤ j≤H
0≤i≤W denotes a normal-map, the normal n(i, j) = (nx,ny,nz) at the

pixel (i, j) is projected onto the point n′(i, j) = (x′,y′) such as:

x′ = k cosθ sin(φ −φ0) (1)

y′ = k(cosθ0 sinφ − sinθ0 cosθ cos(φ −φ0)) (2)

With: θ = π

2 − arccos(nz) and φ = arctan( ny
nx
)

The plane of projection is chosen to be parallel to the image plane, so for each normal,
the centre of projection is such that: θ0 =

pi
2 and φ0 = 0. So equations 3 and 4 become:

x′ = k cosθ(i, j)sinφ(i, j) (3)

y′ = k cosθ(i, j)cosφ(i, j) (4)

Finally, the Azimuthal Projection Distance Image is generated by creating an image with
the same dimensions as the normal map and setting each pixel value to the absolute distance
between the centre of projection and the projected point:

I(i, j) =
√

x′2 + y′2 (5)
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Figure 4 shows an acned skin patch normal map and its Azimuthal Projection Distance
Image.

(a) (b)
Figure 4: Normal-map (a) and APDI (b) of an acned skin patch

2.3 APDI Reformulation

In [11], Azimuthal Projection Distance Image is computed from normal-map by setting each
pixel as the absolute distance of the projected point from the centre of projection (Equation
5). The problem with that formulation is that with a constant projection plane (parallel to the
image plane), all the normals with the same polar angles will result in a same pixel value,
even if they have different azimuthal angles. This means that the APDI does not encode
the azimuthal orientation of the normals. To overcome this, we propose, instead of taking
the absolute distance as pixel value, to take the arc formed by the projected point from the
X’-axis on the projection plane (Figure 5).

x

y

z

N

θ

φ

Figure 5: The distance from the centre of projection (red) is the same for all the normals with
the same polar angle, while the arc (blue) from the X-axis varies with both the azimuthal and
polar angles.

Thus, instead of equation 5, we propose the pixel values to be given by:

I(i, j) = arctan2(y′,x′)
√

x′2 + y2 (6)

We give in figure 6 a comparison of the APDI and our modified version.
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Figure 6: Comparison of APDI and our modified version (1st column: specular normal-map;
2nd column: APDI; 3rd column: our modified APDI)

3 Multi-Resolution Azimuthal Projection Distance Image
We present in this section a multi-scale scheme of APDIs for analysing 3D texture from
dense surface orientations. For a given normal map, a multi-scale APDI pyramid is built
by computing the normal map’s APDIs at different resolutions. Let us firstly describe our
geodesic-based normal map scaling algorithm.

3.1 Scaling Normal Maps

As stated earlier, normals do not lie in a linear space and therefore applying linear opera-
tions such as convolution directly on a normal map is not ideal. So we have to find a theoret-
ically consistent way of rescaling normal maps. There are a number of methods for 3D mesh
re-sampling [5, 10] which could be used to reduce or expand a mesh before recomputing the
normals, but this is limited to cases where the geometry is known. Today photometric stereo
techniques allow recovering surface orientations without depth, so methods for re-sampling
normal maps independently to the geometry are needed. Here we propose a geodesic-based
normal map re-sampling approach.

We use Riemannian differential geometry elements to introduce a new metric (geodesic
distance) which will allow us to perform linear operations on the normals. We assume the
normals to be on a Riemannian manifold and compute all linear operations on a tangent
plane that we chose to be constant for all the normals. Let Expz and Logz be the Riemannian
Exponential and Logarithm operations [3] with z as projection axis, the linear combination
of N normals (ni)1≤i≤N with coefficients (αi)1≤i≤N can be computed as:

f (ni,αi) = Expµ(
N

∑
i=1

αi×Logµ(ni)) (7)
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By definition from the Exponential mapping, the result will always be a unit vector. Our
scaling algorithm is based on that equation. As we are only interested in down-sampling
in this paper, we present in 1 an overview of the down-sampling algorithm. The full im-
plementation includes border checking and index checking which we have omitted here for
brevity.

Algorithm 1: Normal map down-sampling algorithm
Data: N: Normal map, S: Scale factor, [u,v]: Window size
Result: N′: Down-sampled Normal map
nw← bwidth(N)/Sc
nh← bheight(N)/Sc
for i← 1 to nw do

for j← 1 to nh do
T mp← 0
for w← i−b u

2c , k← 1 to u do
for y← j−b v

2c , l← 1 to v do
T mp← T mp+Logz(N(w,y))
y← y+1

end
w← w+1

end
N′(i, j)← Expz(

T mp
u×v )

end
end

We tested the proposed method by comparing a normal map with the result of down-
sampling and up-sampling it back (we used the normal map on Figure 2). The geodesic
method achieves 0.027 mean angular error, while using a classical sampling method on each
channel and renormalizing back the result gives a mean angular error of 0.183.

3.2 Multi-Resolution APDI

With a consistent scaling algorithm, constructing the multi-resolution APDI pyramid be-
comes straightforward. Given a normal map, the pyramid is built by down-sampling the
normal map to different levels. At each level, the APDI is computed from the corresponding
down-sampled normal. The high levels contains higher frequency details adequate for tex-
ture analysis. The more we go down to the lower levels, the more we lose high frequency
details, but the low frequency changes related to the overall shape are highlighted. An in-
teresting way of capturing fine detail would be extracting the loss or the difference between
levels, but this is out of the scope of this paper.

Figure 7 gives a 4-level APDI pyramid of different skin patches. At each level we show
the (down-sampled) normal map used to compute the APDI.
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Pores

Acne

Wrinkles

Figure 7: Multi-scale APDIs for different skin patches

4 Experimental Results
We used the proposed Multi-scale APDI and Local Binary Pattern to classify wrinkles and

pores on high resolution facial normal maps. The experiment is preliminary as the dataset
used (the ICT-3DRFE [13]) does not contain that much skin condition variation. We are in
the process of collecting our own skin condition dataset using the same class of 3D capture
device used on the ICT-3DRFE dataset collection (a Lightstage [7]) in order consider more
skin conditions such as acne, moles etc.

Even though the ICT-3DRFE does not contain that much skin condition and ageing varia-
tion, we have managed to manually extract and rate on a scale of 4 levels (1 meaning “total
absence” and 4 meaning “extremely visible”) 31 patches visually judged wrinkly, 21 patches
showing large pores and 30 smooth patches (for negative samples). The rating is done from
photo-realistic rendering of the faces Figure 8 where the rater can select and give score to
skin patches.

Figure 8: Our 3D Rendering of a face sample ( zooming-in shows fine skin detail )
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Each patch is divided in to a number of fixed-size blocks (with 30% overlap). This gives us
a dataset with 384 rated skin samples. We then compute multi-scale APDI pyramid on each
block. Local Binary Pattern features are finally extracted and concatenated from each level of
the APDI pyramid. Concatenating the features from the different levels produces a relatively
big feature vector depending on the number of levels and the LBP configuration (e.g. a 8-
pixel neighbourhood and 1-pixel radius gives on a 4-level M-APDI a feature vector 1024
long). To reduce the feature dimensionality we rank the features with the method described
in [4] which evaluates each feature’s discriminative power using an SVM classifier. After the
feature ranking, we select the 256 best features and use a Multilayer Perceptron classifier for
learning and classification. Tables 1 and 2 summarize the classification result for different
M-APDI pyramid height using respectively a 66-34% split and a 10-fold cross validation.

Skin Condition APDI 2-level M-APDI 3-level M-APDI 4-level M-APDI
Wrinkle 0.786 0.826 0.930 0.965
Pore 0.858 0.943 0.971 0.988

Table 1: Results showing the accuracy of assigning the correct label :1(not visible), 2(slightly
visible), 3(visible) or 4(extremely visible) wrinkles/pores to the patches. 66-34% SPLIT

Skin Condition APDI 2-level M-APDI 3-level M-APDI 4-level M-APDI
Wrinkle 0.802 0.911 0.987 0.991
Pore 0.860 0.945 0.992 1.000

Table 2: Results showing the accuracy of assigning the correct label :1(not visible), 2(slightly
visible), 3(visible) or 4(extremely visible) wrinkles/pores to the patches. 10-fold CROSS
VALIDATION

5 Conclusion
We proposed a Multi-scale Azimuthal Projection Distance Image for characterising 3D sur-
face texture from facial skin normal maps and applied it to automated skin condition as-
sessment. We modified the original formulation of APDI in order to take account of the
azimuthal orientation and introduced a method for resampling normal maps. Even though
the dataset we have used in this preliminary experiment does not contain much skin condi-
tion variation, the results are very promising. We are working on collecting our own dataset
and look forward to testing the proposed approach on a wider range of skin conditions.
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