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Abstract

Set based recognition has been attracting more and more attention in recent years,
benefitting from two facts: the difficulty of collecting sets of images for recognition
fades quickly, and set based recognition models generally outperform the ones for single
instance based recognition. In this paper, we propose a novel model called collabora-
tively regularized nearest points (CRNP) for solving this problem. The proposal inherits
the merits of simplicity, robustness, and high-efficiency from the very recently intro-
duced regularized nearest points (RNP) method on finding the set-to-set distance using
the l2-norm regularized affine hulls. Meanwhile, CRNP makes use of the powerful dis-
criminative ability induced by collaborative representation, following the same idea as
that in sparse recognition for classification (SRC) for image-based recognition and col-
laborative sparse approximation (CSA) for set-based recognition. However, CRNP uses
l2-norm instead of the expensive l1-norm for coefficients regularization, which makes it
much more efficient. Extensive experiments on five benchmark datasets for face recog-
nition and person re-identification demonstrate that CRNP is not only more effective but
also significantly faster than other state-of-the-art methods, including RNP and CSA.

1 Introduction

As taking pictures/videos and sharing them over networks get easier and more popularized,
collecting a set of images for recognizing an object category/instance becomes increasingly
convenient. Therefore, the direction of using a set of instances/images together for recog-
nition, namely set based recognition [10], has got rapidly growing attention in recent years.
Though most of the methods proposed for solving this problem have been only tested on face
recognition [2, 10, 12, 13] and person re-identification [9, 10], they are generally applica-
ble to any recognition tasks. Set based recognition models have the potential to outperform
single instance based recognition approaches under the same conditions, due to that more in-
stances for testing generally means a higher probability to extract discriminative information
for correct classification. However, the performance largely depends on the detailed design
of the model.
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In the past few years various approaches have been proposed, which were reviewed in
[10] and [12]. In this paper, we are focusing on the type of non-parametric set-to-set distance
finding approaches, which have shown superior performance when compared with other ap-
proaches. A simple model using the minimum point-wise distance (referred to as “MPD”
for short) as the set-to-set distance has been applied for person re-identification in [4] and
got impressive results. However, MPD is sensitive to noises and outliers as the set-to-set dis-
tance only depends on a single point from each set. To overcome this issue, AHISD/CHISD
(Affine/Convex Hull based Image Set Distance) [2] computes an affine/convex hull for each
set and then treats the geometric distance (distance of closest approach) between two hulls
as the set-to-set distance. Since such a distance can be viewed as the distance between two
virtual points generated from each of the two sets by linear combinations, it has some ro-
bustness to noises and outliers.

Later on, SANP (Sparse Approximated Nearest Points) [13] extended the model of
CHISD by enforcing the sparsity of samples used for linear combination, and showed better
performance on face recognition than CHISD. Similar to CHISD, there are also kernel ver-
sions of SANP (KSANP) as presented in [6], which performed slightly better than SANP.
The work of SBDR (Set Based Discriminative Ranking for Recognition) [10] opens a door
towards integrating the power of unsupervised set-to-set distance finding models with the
discriminative ability of supervised learning based approaches. Due to the difficulty of opti-
mizing these two objectives in one step, SBDR adopts an iterative strategy to alternate set-
to-set distance finding (either CHISD or SANP) and discriminative metric learning. Though
both SANP and SBDR (with SANP) have shown quite impressive results, they have a se-
rious drawback of being time-consuming due to the l1-norm based sparsity term in their
model. Worse than SANP, SBDR needs an additional training stage which takes much time,
as shown in the experiments of this paper.

Very recently, the work of regularized nearest points (RNP) [12] has pointed out that
there is no need to use the complex formulation with many parameters and variables and the
sparse constraint on the representation coefficients as adopted by SANP. Instead, RNP just
uses the affine hull formulation (as in AHISD [2]) regularized by the l2-norm term, resulting
in fewer parameters and variables. More attractively, using the l2-norm makes RNP have
a closed-form solution, thus being much more efficient than SANP. Though being simple,
RNP performs even better than SANP on face recognition tasks.

Despite their differences in modeling, all of these approaches share the same idea of us-
ing the independent set-to-set distances between an arbitrary test/query set Q and each of
the training/gallery sets Xi, i ∈ {1, . . . ,n} directly for classification, namely, doing nearest-
neighbor classification based on these set-level distances. The model of CSA (Collaborative
Sparse Approximation) [9], however, explores a new classification model inspired by the
success of sparse representation for classification (SRC) [8]. More concretely, CSA finds
the set-to-set distance between Q and all Xis together (treating them as a large single set),
and then it classifies Q by the reconstruction residuals using only individual gallery sets (i.e.
Xis) and their corresponding coefficients. The collaborative manner in the distance finding
coincides with the underlying power of SRC as they both use all the training data to recon-
struct a test set/sample. It tends to assign higher weights to the samples belonging to the
same class as the test set/sample, because statistically those samples should be closer to the
test set/sample than any others in a reasonably good feature space. Therefore, by identifying
the set of samples which have higher coefficients and a lower reconstruction residual, we
are likely able to get the correct class label for the test set/sample. The differences between
the independent distance finding approaches and the collaborative distance finding approach
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Figure 1: Independent distance finding v.s. collaborative distance finding, using the problem
of person re-identification as an example (other tasks shall look the same). (a) The set-to-set
distances generated by traditional independent distance finding approaches; (b) the set-to-
sets distance got by collaborative distance finding methods.

CSA are illustrated in Figure 1. For set-to-sets distance finding, CSA utilizes the SANP
model as it has the same l1-norm based constraint on the coefficients as that in the SRC
model. Since it only needs to compute the set-to-sets distance once, it is usually more effi-
cient than the SANP approach itself which has to compute n individual set-to-set distances.

In this paper, we propose a novel collaborative distance finding approach called Col-
laboratively Regularized Nearest Points (CRNP). Unlike CSA, it uses RNP for set-to-sets
distance finding, which no longer ensures the sparsity of the coefficients as SANP does,
thus being much simpler and computational more efficient than CSA. Compared with RNP,
CRNP needs only one-round set-level distance finding so it could be much faster than RNP.
Moreover, CRNP enables introducing the discriminative class-specific (or set-specific) co-
efficients generated by collaborative reconstruction into its classification model, resulting
in a further boosting of the performance. The effectiveness of using l2-norm instead of l1-
norm for classification based on collaborative reconstruction has also been witnessed in the
work of CRC (Collaborative Representation for Classification) [14]. However, the proposed
CRNP is to the best of our knowledge the first one that deals with set based recognition, and
as a set-based model using regularized affine hulls, it is quite different from simply extending
CRC to simultaneously handle a set of testing samples, which will be demonstrated in our
experiments.

The rest parts of the paper are organized as follows. Section 2 briefly reviews the RNP
model, which leads to our proposed model of CRNP to be detailed in section 3. Section 4
shows the experimental results on both face recognition and person re-identification using 5
benchmark datasets. Conclusions and future work are given in section 5.

2 Regularized Nearest Points
RNP models each image set by a regularized affine hull (RAH) formulated as:

RAH =
{

x = Xiααα |∑k αk = 1,∥ααα∥2 ≤ σ
}
, (1)
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where the matrix Xi is a collection of the samples belong to set i with each column denoting
the feature vector of an image and the vector ααα denotes the combination coefficients. Note
that in [12], the regularizer of RAH is defined using a lp-norm to make the model as general
as possible, but only p = 2 has been implemented for RNP. Therefore, here we directly use
l2 and keep it consistent throughout the paper. The difference between RAH and AHISD is
the additional l2-norm regularization of ααα , which makes the affine combination only focus
on the samples close to the sample mean of the set.

For a given test/query set Q and a training/gallery set Xi, RNP finds two nearest points
from the RAH of Q and the RAH of Xi, respectively, by solving the following optimization
problem:

min
ααα,βββ

∥Qααα −Xiβββ∥2
2 , s.t. ∑k αk = 1,∑ j β j = 1,∥ααα∥2 ≤ σ1,∥βββ∥2 ≤ σ2, (2)

whose dual problem is

min
ααα,βββ

{
∥Qααα −Xiβββ∥2

2 +λ1 ∥ααα∥2
2 +λ2 ∥βββ∥2

2

}
, s.t. ∑k αk = 1,∑ j β j = 1, (3)

where λ1 and λ2 are Lagrangian multipliers, and the affine hull constraints (i.e., ∑k αk =
1,∑ j β j = 1) help avoiding the trivial solution (ααα = βββ = 0).

After getting the solution (ααα∗,βββ ∗) of Equation 3, the set-to-set distance between Q and
Xi is defined to be

di
RNP = (∥Q∥∗+∥Xi∥∗) ·

∥∥Qααα∗−Xiβββ ∗∥∥2
2 , (4)

where ∥Q∥∗ is the nuclear norm of Q, i.e. the sum of the singular values of Q. The nu-
clear norm term reflects the representation ability of a set, and it can remove the possible
disturbance unrelated to the class information, to avoid biasing on large sets.

Finally, Q is classified by

C (Q) = argmin
i

{
di

RNP
}
. (5)

3 Collaboratively Regularized Nearest Points
The proposed CRNP model performs collaborative distance finding using all the training/gallery
sets instead of the independent set-by-set distance finding in RNP, so the distance finding
model and its optimization change according. Besides that, CRNP has a different classifi-
cation model which makes use of the discriminative coefficients generated by collaborative
distance finding. The details of these three aspects are given as follows.

3.1 Collaborative distance finding
Given the test/query set Q and all the training/gallery sets Xi, i ∈ {1, . . . ,n}, CRNP solves
the following optimization problem:

min
ααα,βββ

{
∥Qααα −Xβββ∥2

2 +λ1 ∥ααα∥2
2 +λ2 ∥βββ∥2

2

}
, s.t. ∑k αk = 1,∑n

i=1 ∑ j β j
i = 1, (6)

where X = [X1, . . . ,Xn] denotes all the training/gallery sets together; βββ = [βββ T
1 , . . . ,βββ

T
n ]

T are
the corresponding coefficients for these sets; λ1 and λ2 are trade-off parameters.
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This problem inherits the distance finding model from RNP, however, the small change
of replacing Xi in Equation 3 by X causes a big change from independent distance finding
to collaborative distance finding, which may lead to quite different classification results, as
illustrated in Figure 1 and demonstrated in Section 4.

3.2 Distance finding optimization

The optimization problem 6 with equality constraints can be transformed to the following
unconstrained optimization problem:

min
ααα ,βββ

{
∥Qααα −Xβββ∥2

2 +λ1 ∥ααα∥2
2 +λ2 ∥βββ∥2

2 + γ1
(
1−∑k αk

)2
+ γ2

(
1−∑n

i=1 ∑ j β j
i

)2
}
,

(7)
where γ1 and γ2 are Lagrangian multipliers. It can be rewritten into a simpler form as

min
ααα ,βββ

{∥∥z− Q̂ααα − X̂βββ
∥∥2

2 +λ1 ∥ααα∥2
2 +λ2 ∥βββ∥2

2

}
, (8)

where z = [01,m,
√γ1,

√γ2]
T with m denoting the dimensionality of the image feature space,

Q̂ = [QT ,
√γ11Nq,1,0Nq,1]

T with Nq denoting the number of samples in Q, and X̂ = [−XT ,

0Nx,1,
√γ21Nx,1]

T with Nx denoting the number of samples in X. 0i, j and 1i, j denote the i× j
zero matrix and the i× j dimensional matrix of ones, respectively.

Though the above problem has a closed-form solution, we follow [12] on alternatively
optimizing ααα and βββ , which avoids the time-consuming matrix inverse operation of an in-
tegrated matrix containing both Q and X for each test/query set Q. In the alternative op-
timization of problem 8, however, the matrix inverse operation on the training data X is
independent of Q, so it can be pre-computed before testing.

More concretely, when ααα is fixed, βββ has a closed-form solution

βββ ∗ = Px
(
z− Q̂ααα

)
, (9)

where

Px =
(
X̂T X̂+λ2I

)−1 X̂T (10)

(with I denoting the identity matrix) only depends on X, so it can be pre-computed. When βββ
is fixed, ααα also has a closed-form solution

ααα∗ = Pq
(
z− X̂βββ

)
, (11)

where Pq =
(
Q̂T Q̂+λ1I

)−1 Q̂T , with I denoting the identity matrix.
The algorithm of CRNP for computing the nearest points from both training and test sets

is summarized in Algorithm 1. As claimed in [12], the objective function in Formula 8 has a
lower bound of 0 and it is jointly convex w.r.t. ααα and βββ . Since in the alternative optimization,
each step on updating ααα and βββ decreases the objective, the iteration will converge to the
global optimal solution. In our experiments to be presented, the iteration usually terminates
in no more than 10 steps.
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Algorithm 1 COLLABORATIVELY REGULARIZED NEAREST POINTS (CRNP):
Require: The training/gallery sets X ∈ Rm×Nx , an arbitrary test/query set Q ∈ Rm×Nq ,

the pre-computed z, X̂ and Px (using Equation 10), and four trade-off parameters
{λ1,λ2,γ1,γ2}.

Ensure: The representation coefficients for distance finding: ααα∗ and βββ ∗.
1: Construct Q̂ = [QT ,

√γ11Nq,1,0Nq,1]
T .

2: Compute the project matrix Pq = (Q̂T Q̂+λ1I)−1Q̂T .
3: Initialize βββ 0 = 1/Nx.
4: while not converged or not exceeding the maximum number of iterations do
5: Update the representation coefficients:
6: ααα t+1 = Pq(z− X̂βββ t).
7: βββ t+1 = Px(z− Q̂ααα t+1);
8: end while
9: Return ααα∗ and βββ ∗.

3.3 Classification
The collaborative distance finding in CRNP implicitly makes βββ ∗ = [βββ ∗

1, . . . ,βββ
∗
n] discrimina-

tive. Therefore, we define the dissimilarity between Q and Xi, i ∈ {1, . . . ,n} as

di
CRNP = (∥Q∥∗+∥Xi∥∗) ·

∥∥Qααα∗−Xiβββ ∗
i

∥∥2
2 /

∥∥βββ ∗
i

∥∥2
2 , (12)

where ∥Q∥∗ is the nuclear norm of Q, i.e. the sum of the singular values of Q. Then, Q is
classified by

C (Q) = argmin
i

{
di

CRNP
}
. (13)

Compared with di
RNP, di

CRNP benefits from the discriminative power of βββ ∗, which tends
to make the class-specific reconstruction residual

∥∥Qααα∗−Xiβββ ∗
i

∥∥2
2 smaller and

∥∥βββ ∗
i

∥∥2
2 larger

for the ground-truth label i than any other labels j ∈ {1, . . . ,n}, j ̸= i. The effectiveness of
CRNP’s classification model will be demonstrated in the following section.

4 Experiments and Results
To make the comparison with the state-of-the-art approaches for set based recognition fair
and sufficient, we perform experiments on both face recognition and person re-identification,
and report results of all the related methods when applicable. Detailed experimental settings
are given in section 4.1, followed by the result comparison and analysis shown in section
4.2. Finally, we report the computational cost for the compared methods in section 4.3.

4.1 Experimental settings
Datasets. For face recognition, we follow most of the related approaches on using the
Honda/UCSD dataset [7] and the CMU MoBo dataset [5] with the same settings of using
the first 50 or 100 frames for recognition as in [13], [10] and [12]. The sizes of the images
and the feature representations exactly follow [10] (namely, raw pixels for Honda/UCSD
dataset and LBP features for CMU MoBo dataset). Following the common settings, for
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Honda/UCSD dataset, the specified 20 sequences of 20 subjects are used for training/gallery
and the rest 39 sequences are left for testing/querying; for CMU MoBo dataset, we perform
a 10-time cross-validation by randomly choosing one sequence from the four candidates for
each of the 24 subjects and have the unselected sequences left for testing. The properties of
the these two datasets can be found in [10] and [12].

For person re-identification, we follow [9] on using the iLIDS-MA and iLIDS-AA datasets
[1] for evaluation, along with an additional dataset CAVIAR4REID [3]. These datasets have
interesting and complementary properties, thus being informative for comparison. “iLIDS-
MA” and “iLIDS-AA” contain multiple images (92 in iLIDS-MA, and 21 to 243 in iLIDS-
AA) for each human individual captured by two non-overlapping cameras (camera 1 and
camera 3 in their original setting) at an airport with large viewpoint changes. The iLIDS-
MA dataset has 40 persons with manually cropped images, while the iLIDS-AA dataset con-
tains as many as 100 individuals collected by an automatic tracking algorithm. Therefore,
compared with iLIDS-MA, iLIDS-AA is not only larger, but also noisier with localization
errors and unequal class sizes. For both datasets, we perform 10-time cross-validation by
randomly choosing 10 images for each gallery/query set. Unlike iLIDS-MA and iLIDS-AA,
CAVIAR4REID consists of several sequences filmed in a shopping centre. Besides view-
point changes, it has broad resolution changes and severe pose variations. We follow [3] on
training with 22 specified subjects and testing on the other 50 subjects. Each set (either for
gallery or query) contains 5 randomly sampled images, and 10-time cross-validation is per-
formed for result averaging. We use the same 400-dimensional color and texture histograms
based features as mentioned in [11] for all the three datasets.
Methods for comparison. We compare CRNP with all the related state-of-the-arts methods
as introduced in section 1, including MPD[4], SRC[8], CRC[14], CHISD[2], SANP[13],
KSANP[6], SBDR[10], CSA[9] and RNP[12]. Note that SRC and CRC in this paper stand
for the extended versions from their original models. We simply replace the single test image
in these two models by a set of images to do an overall reconstruction and classification. For
KSANP and SBDR, we only report the results that have been listed for the same tasks in
their original publications, while for the others, we have their codes either from their authors
(such as SRC, CHISD, SANP, and CSA) or implemented by ourselves (such as MPD, CRC
and RNP) run on the same data splits using the same features.
Parameters. For CRNP, we have λ1 = λ2 = 4,γ1 = γ2 = 1 fixed for all the experiments. For
the other methods, we used the recommended parameters given in their original papers.

4.2 Experimental results and analysis
Honda/UCSD dataset. The results for all the concerned methods are listed in Table 1 for
both the 50 frames/set and 100 frames/set settings. Besides the referred results for KSANP
and SBDR, we also refer the originally reported results for some other methods when they
are significantly different from their results in our experiments. It is clear that the proposed
CRNP greatly outperforms all the other methods (over 2.5%). For both experimental set-
tings, SRC, KSANP and RNP are relatively better than the others.
CMU MoBo dataset. The results for the CMU MoBo dataset are shown in Table 2. Unfor-
tunately, the referred results for SBDR were generated with the training set fixed to be the
frontal sequence, which is unlike the completely random sequence sampling in this paper and
also the other papers. Therefore, they are not counted for competing the best performance.
In can be seen that CRNP still significantly outperforms all the others when 50 frames/set is
used, while it is only slightly worse than RNP when 100 frames are available for each set.
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Table 1: Face recognition accuracy (%) comparison on the Honda/UCSD dataset. The results
with stars are directly copied from their original papers for reference, while those without
stars are got from our experiments. The best results are shown in bold.
Method MPD[4] SRC[8] CRC[14] CHISD[2] SANP[13] KSANP[6] SBDR[10] CSA[9] RNP[12] CRNP

50 frames 79.49 76.92 76.92 79.49/82.05∗ 84.62/84.62∗ 87.18∗ 87.69∗ 84.62 66.67/87.18∗ 89.74
100 frames 87.18 94.87 82.05 79.49/84.62∗ 89.74/92.31∗ 94.87∗ 89.23∗ 92.31 92.31/94.87∗ 97.44

Table 2: Face recognition accuracy (%) comparison on the CMU MoBo dataset. The results
with stars are directly copied from their original papers for reference, while those without
stars are got from our experiments. All these results are averaged over 10 random trials, with
the best ones shown in bold. Note that the referred results for SBDR were generated with a
different experimental setting, so they are not counted for performance ranking.

Method MPD[4] SRC[8] CRC[14] CHISD[2] SANP[13] SBDR[10] CSA[9] RNP[12] CRNP

50 frames 92.22 88.89 89.72 90.83 90.14 95.00∗ 86.25 91.81/91.9∗ 93.33
100 frames 94.31 92.36 93.06 94.17 93.61 96.11∗ 94.44 94.58/94.7∗ 94.44

It indicates that too large set size may weaken the discriminative power of the collaborative
distance finding as it is more likely that some samples from different classes may confuse
the correct class in collaborative representation. Even though, such a risk is still very low,
which demonstrates the robustness of CRNP.
Person re-identification datasets. For person re-identification, since it is widely treated as
a ranking problem and people usually care about the recognition accuracy in the top few
ranks, we report both the rank-1 accuracy and the rank top 10% accuracy for a considerate
comparison. As Table 3 shows, CRNP has significant superiority in both measures compar-
ing with the others, especially on the most challenging CAVIAR4REID dataset. The results
of CRNP on CAVIAR4REID also greatly outperform the state-of-the-art results in [3].

Table 3: Performance comparison for person re-identification with all the related methods on
three benchmark datasets. Both the rank-1 accuracy and the rank top 10% accuracy (shown
in parenthesis). The results are averaged over 10 random trials, with the best ones marked in
bold.

Dataset MPD[4] SRC[8] CRC[14] CHISD[2] SANP[13] CSA[9] RNP[12] CRNP

iLIDS-MA 50.0(75.0) 57.3(74.8) 28.5(50.0) 52.5(72.8) 46.8(74.8) 59.0(71.3) 53.3(76.0) 59.0(78.3)
iLIDS-AA 23.8(60.4) 36.0(68.9) 24.7(54.1) 24.6(58.2) 19.2(57.3) 22.5(59.6) 25.5(59.9) 35.4(71.6)
CAVIAR4REID 19.0(47.2) 25.4(50.8) 16.6(37.6) 25.4(51.2) 25.2(52.4) 24.6(48.8) 24.0(50.2) 26.8(63.6)

4.3 Computational cost

In addition to accuracy, we also evaluate the efficiency of CRNP, in comparison with the
others. All the methods compared are implemented in Matlab. We implemented MPD, CRC,
RNP and CRNP by ourselves without specific code optimization. All the experiments were
conducted on a 2.67 GHz dual-core machine with 20GB memory (actually no more than
2GB were used). Since some of the methods can have (parts of) their models pre-computed
before testing, we report the pre-computation time for them in Table 4. The results show
that the training phase of SBDR is very time-consuming, while the pre-computation time for
other three methods are ignorable. In greater detail, CRNP needs a bit more time than RNP,
but less time than CSA.
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Table 4: For those methods which can have (parts of) their models pre-computed using the
training data, the total pre-computation time (in seconds) is listed for comparison.

Dataset Honda/UCSD CMU MoBo iLIDS-MA iLIDS-AA CAVIAR4REID50 frames 100 frames 50 frames 100 frames

SBDR[10] 9.23×103 1.46×104 1.23×104 3.14×104 N/A N/A N/A
CSA[9] 0.59 0.74 28.7 50.2 0.39 0.62 0.26
RNP[12] 0.06 0.20 0.17 0.64 0.02 0.05 0.02
CRNP 0.22 0.87 0.64 2.66 0.04 0.22 0.02

Table 5: Computational cost comparison with all the related methods on all of the recognition
tasks. The results are averaged over 10 random trials if applicable, and we report them in the
“milliseconds per sample” manner to eliminate the influence of dataset size variation. The
best results for the methods excluding “CRC” are shown in bold.
Dataset MPD[4] SRC[8] CRC[14] CHISD[2] SANP[13] SBDR[10] CSA[9] RNP[12] CRNP

Honda/UCSD (50) 3.2 1.2×103 0.28 77.7 19.6 259 17.4 11.5 0.32
Honda/UCSD (100) 6.4 4.1×103 0.55 330 17.3 97.8 32.6 14.5 0.46
CMU MoBo (50) 12.4 7.6×103 0.94 89.0 47.2 85.0 29.0 3.5 2.1
CMU MoBo (100) 71.4 2.7×104 1.8 394 53.0 79.3 39.1 5.9 2.5
iLIDS-MA 3.9 741 0.51 58.7 121 N/A 9.6 24.5 3.3
iLIDS-AA 9.9 2337 1.2 150 344 N/A 36.8 83.4 7.2
CAVIAR4REID 3.8 214 0.35 55.3 249 N/A 15.8 30.8 8.0

The testing time for all the methods is listed in Table 5, showing that CRNP is generally
more efficient than all the others except CRC as it just performs MPD in a low-dimensional
projected space.

5 Conclusion and Future Work
We have proposed a novel set based recognition model which is generally more effective and
significantly faster than other related methods. Experimental results on five different bench-
mark datasets have demonstrated its superiority. A possible future work will be introducing
dictionary learning into the model to further improve its performance and robustness.
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