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Set based recognition (i.e, using a set of instances together for recogni-
tion) has been attracting more and more attention in recent years, benefit-
ting from two facts: the difficulty of collecting sets of images for recogni-
tion fades quickly, and set based recognition models generally outperform
the ones for single instance based recognition. In the past few years vari-
ous approaches have been proposed, which were reviewed in [4] and [7].

In this paper, we propose a novel model called collaboratively reg-
ularized nearest points (CRNP) which inherits the merits of simplicity,
robustness, and high-efficiency from the very recently introduced regu-
larized nearest points (RNP) method [7] on finding the set-to-set distance
using the l2-norm regularized affine hulls. Meanwhile, CRNP makes use
of the powerful discriminative ability induced by collaborative represen-
tation, following the same idea as that in sparse recognition for classifica-
tion (SRC) for image-based recognition [3] and collaborative sparse ap-
proximation (CSA) for set-based recognition [5]. However, CRNP uses
l2-norm instead of the expensive l1-norm for coefficients regularization,
which makes it much more efficient.

Given the test/query set Q and all the training/gallery sets Xi, i ∈
{1, . . . ,n}, CRNP solves the following optimization problem:

min
α,β

{
∥Qα −Xβ∥2

2 +λ1 ∥α∥2
2 +λ2 ∥β∥2

2

}
,

s.t. ∑k αk = 1, ∑n
i=1 ∑ j β j

i = 1,
(1)

where X = [X1, . . . ,Xn] denotes all the training/gallery sets together; βββ =

[βββ T
1 , . . . ,βββ

T
n ]

T are the corresponding coefficients for these sets; λ1 and λ2
are trade-off parameters.

This problem inherits the distance finding model from RNP, however,
it performs collaborative set-to-sets distance finding using all the train-
ing/gallery sets instead of the independent set-to-set distance finding in
RNP as illustrated in Figure 1.

The optimization problem (1) with equality constraints can be trans-
formed to the following unconstrained optimization problem:

min
ααα ,βββ

{∥∥z− Q̂ααα − X̂βββ
∥∥2

2 +λ1 ∥ααα∥2
2 +λ2 ∥βββ∥2

2

}
, (2)

where z = [01,m,
√γ1,

√γ2]
T with m denoting the dimensionality of the

image feature space and γ1 and γ2 denoting the Lagrangian multipliers.
Q̂ = [QT ,

√γ11Nq,1,0Nq,1]
T in which Nq is the number of samples in Q,

and X̂= [−XT ,0Nx,1,
√γ21Nx,1]

T where Nx is the number of samples in X.
0i, j and 1i, j denote the i× j zero matrix and the i× j dimensional matrix
of ones, respectively.

We follow [7] on alternatively optimizing ααα and βββ , which avoids the
time-consuming matrix inverse operation of an integrated matrix contain-
ing both Q and X for each test/query set Q. More concretely, when ααα is
fixed, βββ has a closed-form solution

βββ ∗ = Px
(
z− Q̂ααα

)
, (3)

where Px =
(
X̂T X̂+λ2I

)−1 X̂T (with I denoting the identity matrix) only
depends on X, so it can be pre-computed. When βββ is fixed, ααα also has a
closed-form solution

ααα∗ = Pq
(
z− X̂βββ

)
, (4)

where Pq =
(
Q̂T Q̂+λ1I

)−1 Q̂T .
As claimed in [7], the objective function in Formula (2) has a lower

bound of 0 and it is jointly convex w.r.t. ααα and βββ . Since in the alternative
optimization, each step on updating ααα and βββ decreases the objective, the
iteration will converge to the global optimal solution. In our experiments
to be presented, the iteration usually terminates in no more than 10 steps.
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(a) Set-to-set distances (b) Set-to-sets distance

Figure 1: Motivation illustration. (a) The set-to-set distances generated
by traditional independent distance finding approaches; (b) the set-to-sets
distance got by collaborative distance finding methods.

Besides that, CRNP has a different classification model from that of
RNP which makes use of the discriminative coefficients generated by col-
laborative distance finding. We define the dissimilarity between Q and
Xi, i ∈ {1, . . . ,n} as

di
CRNP = (∥Q∥∗+∥Xi∥∗) ·

∥∥Qααα∗−Xiβββ ∗
i
∥∥2

2 /
∥∥βββ ∗

i
∥∥2

2 , (5)

where ∥Q∥∗ is the nuclear norm of Q, i.e. the sum of the singular values
of Q. Then, Q is classified by

C (Q) = argmin
i

{
di

CRNP

}
. (6)

Extensive experiments on five benchmark datasets for face recogni-
tion and person re-identification demonstrate that CRNP is not only more
effective but also significantly faster than other state-of-the-art methods.

Table 1: Computational cost comparison with all the related methods on
all of the recognition tasks. The results are averaged over 10 random trials
if applicable, and we report them in the “milliseconds per sample” manner
to eliminate the influence of dataset size variation. The best results for the
methods excluding the less robust “CRC” model are shown in bold.
Dataset MPD[2] SRC[3] CRC[8]CHISD[1]SANP[6]SBDR[4]CSA[5]RNP[7]CRNP
Honda/UCSD (50) 3.2 1.2×103 0.28 77.7 19.6 259 17.4 11.5 0.32
Honda/UCSD (100) 6.4 4.1×103 0.55 330 17.3 97.8 32.6 14.5 0.46
CMU MoBo (50) 12.4 7.6×103 0.94 89.0 47.2 85.0 29.0 3.5 2.1
CMU MoBo (100) 71.4 2.7×104 1.8 394 53.0 79.3 39.1 5.9 2.5
iLIDS-MA 3.9 741 0.51 58.7 121 N/A 9.6 24.5 3.3
iLIDS-AA 9.9 2337 1.2 150 344 N/A 36.8 83.4 7.2
CAVIAR4REID 3.8 214 0.35 55.3 249 N/A 15.8 30.8 8.0
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