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Boundary-based interactive segmentation methods aim to build a
closed contour, very often using minimum cost paths linking user-
provided ordered landmark points. While discrete methods rely on a
graph modeling of the image, continous models address the problem by
means of curve optimization. Among them, the minimal path method
[1] find curves of minimal length defined from an edge-based cost func-
tion P=g+w, where g is a decreasing function of the image gradient
magnitude defined over image domain D, and w is a regularizing con-
stant. Given two points a and b, the geodesic path between them,

γa,b = argmin
C⊂D

{
L[C] =

∫ 1

0
P(C(u))

∥∥C′(u)∥∥du
}

s.t.
{

C(0) = a
C(1) = b

(1)

can be obtained by considering the geodesic distance map, or minimal
action map, Ua :D→R+, efficiently computable by the Fast Marching
(FM) method [3]. The minimal path between a and b can be extracted by
a gradient descent on Ua, starting from b until a is reached. This can fail
to extract the desired curve, for instance when P is too noisy or when
the length of the target curve is too important. To address this issue,
several approaches build a piecewise-geodesic curve, i.e. a concatena-
tion of geodesic curves connecting pairs of successive landmark points
or vertices. Among them, the geodesically linked active contour (GLAC)
model [2] is generated by joining end-to-end geodesic paths built from a
set of vertices V = {vi}1≤i≤n. The GLAC approach consists in finding the
sequence of n vertices which generates a piecewise-geodesic curve mini-
mizing a weighted sum of an edge-fitting term and a region homogeneity
term. While this model allows to blend the benefits of minimal paths and
region-based terms and is relatively robust to local minima, it turns out
to have a significant drawback, as its initial state is not necessarily a sim-
ple closed curve. This can occur for instance when the initial vertices are
unevenly distributed around the target boundary. In this case, geodesics
gather on particular sides of the target boundary, overlapping each other.

Hence, we propose a more relevant contour construction preserving
the advantages of piecewise-geodesic curves. Assuming that a set of sev-
eral possible relevant paths is available for each pair of successive ver-
tices, we may select a single path from each set and combine these paths
in order to build the best boundary curve. Let Ai be a set of Ki admissible
paths linking the two vertices,

Ai = {γi, j}1≤ j≤Ki ,

which we refer to as admissible set. Curve γi,1 is the geodesic path be-
tween vi and vi+1. To generate supplemental paths γi, j,2 ≤ j ≤ Ki, we
propose an approach based on the extraction of saddle points. When prop-
agation is performed from two source points a and b, yielding the com-
bined action map Ua,b = min(Ua,Ub), the two propagation fronts meet at
the saddle points, which are the mountain passes on the different roads
travelling from a to b. For each pair of successive vertices (vi,vi+1), the
combined action map is propagated simultaneously from vi and vi+1, gen-
erating two monotonically advancing fronts. Among the locations where
the two fronts collide, those which are also local minima of Uvi,vi+1 in the
direction orthogonal to the propagation direction are kept as the Ki sad-
dle points. Two gradient descents are performed both sides apart from
each saddle point and the resulting assembled paths make up the admis-
sible set Ai. The combined action map, the detected saddle points and
corresponding paths are shown in Fig. 1 (top row, left).

The computation of an admissible closed contour consists in picking
up one path per admissible set Ai such that the resulting concatenation
of selected paths minimizes energy E, designed to penalize contours that
are not simple, poorly fitting to image edges or enclosing regions with
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Figure 1: Top row: potential P. Medial curve (black) and saddle points
(green) with corresponding paths drawn over combined action map. Mid-
dle and bottom row: Admissible set for each pair of successive vertices
with n = 4. Paths are sorted according to their exteriority

overlapping color distributions:
E[Γ] = Esimplicity[Γ] + ωedgeEedge[Γ] + ωregionEregion[Γ].

Basically, Esimplicity is a novel term involving measures of self-
overlapping and self-intersection. The edge term sums up a decreasing
function of the gradient magnitude along the contour, whereas the re-
gion term is based on the Bhattacharya coefficient between color distri-
butions of inner and outer regions. To determine the best sequence of
labels {x1, . . . ,xn}, instead of an exhaustive search, we propose a greedy
search in O(n2Kmax), where Kmax is the maximum number of admissi-
ble paths over all sets Ai. In each admissible set Ai, paths are sorted
according to increasing exteriority X , i.e. the signed area, calculated
with Green’s theorem, formed by a given path C and the line segment
from C(1) returning to C(0). The vertices being located clockwise, ad-
missible paths are sorted from the innermost to the outermost (see Fig. 1,
middle and bottom rows). Starting from an initial labelling corresponding
to the most interior configuration, labels are changed according to a local
search, by iteratively testing candidate labellings. At each iteration, can-
didate sequences are tested that differ from a single label from the current
labelling, by increasing labels only. The candidate sequence leading to
the smallest energy is kept along the iterations.
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