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Abstract

Discovering a latent common space between different modalities plays an important
role in cross-modality pattern recognition. Existing techniques often require absolutely-
paired observations as training data, and are incapable of capturing more general seman-
tic relationships between cross-modality observations. This greatly limits their appli-
cations. In this paper, we propose a general framework for learning a latent common
space from relatively-paired observations (i.e., two observations from different modali-
ties are more-likely-paired than another two). Relative-pairing information is encoded
using relative proximities of observations in the latent common space. By building a
discriminative model and maximizing a distance margin, a projection function that maps
observations into the latent common space is learned for each modality. Cross-modality
pattern recognition can then be carried out in the latent common space. To evaluate its
performance, the proposed framework has been applied to cross-pose face recognition
and feature fusion. Experimental results demonstrate that the proposed framework out-
performs other state-of-the-art approaches.

1 Introduction
It is very common that an object can have very different presentations in different modalities.
For instance, printed and hand-written forms of the same character can look very different, so
are face photo and face sketch of the same person. Humans have little problem in recognizing
objects across different modalities (e.g., matching face sketches to face photos). In contrast,
conventional machine learning methods, such as k-NN classifiers, perform poorly in cross-
modality pattern recognition since they assume both the training data and test patterns are
randomly sampled from the same distribution (which is not the case in cross-modality pattern
recognition) [31].

There exist a number of research studies in the literature targeting at cross-modality pat-
tern recognition, which can be roughly classified into one of the three main approaches.
The first approach consists of transforming one modality into another in a preprocessing
step [3, 34]. The second approach is by extracting modality-invariant features to represent
an object [17, 38]. A major limitation of these two approaches is that methods based on
these approaches are usually tailor-made for each different modality pair involved in dif-
ferent recognition tasks. The third approach is to find an underlying latent common space
shared between different modalities [4, 14, 20, 30, 31]. Unlike the first two approaches, the
third approach does not depend on task-dependent knowledge. Methods based on the third
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approach are therefore general frameworks that can be applied to different applications. Ex-
isting methods of the third approach often require absolutely-paired observations as training
data. We refer to them as Absolutely-Paired Space Analysis (APSA). These methods as-
sume the projections of paired observations being dependent in the latent space, and can
only represent a binary relationship between observations (i.e., either paired observations or
non-paired observations).

In many application scenarios, however, it is more suitable to consider relatively-paired
observations (i.e., two observations from different modalities are more-likely-paired than an-
other two) than absolutely-paired observations. For instance, given an input text query, an
image search-engine (such as Google) will return a list of most probable images. The images
clicked by the user are not absolutely-paired with the input text, but instead are more-likely-
paired with the input text than other returned images. In fact, relative-pairing is a general
pairing relationship that also covers absolute-pairing. One can safely consider two observa-
tions that are absolutely-paired being more-likely-paired than other non-paired observations.
Another advantage of considering relatively-paired training data is that label information of
the observations can be easily integrated to boost recognition performance. It is reasonable to
assume observations with the same label being more-likely-paired than those with different
labels. This strategy can be used to reduce within-class scatter while maximizing between-
class scatter in the latent common space, as well as increase the minimium distance between
observations with different labels in the latent common space.

In this paper, we propose a general framework named Relatively-Paired Space Analy-
sis (RPSA) which works on relatively-paired observations. Note that RPSA is not a trivial
extension of APSA as they are based on completely different models. APSA methods are
often based on generative models [2, 4, 20] which either explicitly or implicitly assume the
distributions of model parameters and noise (e.g., Gaussian distribution). The final estima-
tion will be unreliable when real data do not fit the assumption. As opposed to APSA, our
method is based on a discriminative model that has no distribution assumption. Besides,
APSA methods learn a projection function for each modality by exploring the statistics de-
pendence of the projections of absolutely-paired observations in the latent common space.
This one-to-one absolute-pairing requirement makes them not suitable for relatively-paired
observations. In our proposed framework, we compute the projection functions by preserv-
ing the relative proximities of observations in the latent common space (i.e., if observations
a and b are more-likely-paired than observations a and c, then the distance between the pro-
jections of a and c in the latent common space is assumed to be longer than that between a
and b). We validate our RPSA framework by applying it to cross-pose face recognition and
feature fusion. Experimental results demonstrate that our proposed framework outperforms
other state-of-the-art approaches. The main contributions of this paper are

1. We propose a general framework for automatically learning a latent common space
between different modalities from relatively-paired observations, which, to the best of
our knowledge, has not been explored before.

2. We apply our proposed RPSA framework to cross-pose face recognition and feature
fusion, and achieve significant improvement in recognition performance compared
with other state-of-the-art methods.
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2 Related Work
There exist a large number of research studies on cross-modality pattern recognition in the
literature. Due to page limitation, however, we focus our discussion only on those most rel-
evant work that automatically learn a latent common space between different modalities. In
[4], Borga et al. proposed the Canonical Correlation Analysis (CCA) which finds a latent
common space by maximizing the correlation of the projections of cross-modality obser-
vations. Sun et al . [30] extended CCA by maximizing the within-class correlations and
minimizing between-class correlations. In [8], Torre and Black developed the Asymmetric
Coupled Component Analysis (ACCA) to explicitly learn the dependence of projections in
a latent common space. Similarly, Lin and Tang [13] explored the coupled space by alterna-
tively maximizing the correlation of projections of cross-modality observations and finding
the relations between these projections. Different from CCA, Partial Least Square (PLS)
[20, 22] chooses linear mappings such that the covariance between projections of cross-
modality observations in the latent common space is maximized. Bilinear Models (BLM)
was proposed in [31] to separate style and content. Besides, researchers have proposed ad-
vanced nonlinear methods based on GPLVM [9, 18, 28]. All the above methods require
absolutely-paired observations as training data. Recently, Lampert and Krömer [12] learned
a latent space based on weakly-paired data (i.e., subsets of observations of one modality are
paired with those of another modality) by alternatively finding element pairs and maximiz-
ing covariance of projections of cross-modality observations. Sharma et al . [25] proposed a
General Multi-view Analysis (GMA) approach which is solved as a generalized eigenvalue
problem. Different from previous work, our proposed framework depends on neither prior
distribution assumptions nor statistics computations, and learns a latent common space by
preserving relative proximities of the relatively-paired training data in the latent common
space.

Metric learning can be interpreted as finding a latent space for a single-modality obser-
vation space by linear projection. In [35], Xing et al. proposed to minimize the distances
between samples from a similar set while keeping the distances of those from a dissimilar
set above a threshold. Goldberger et al. [10] directly maximized a stochastic variant of the
leave-one-out k-NN score on the training set. Since then, many other methods [7, 26, 33]
were proposed to achieve a similar goal. However, these methods only focus on a single
modality. In the recent work of Quadrianto and Lampert [21], they extended metric learning
to multiple modalities by explicitly modeling linear projections. Their objective function is
non-convex and thus the final optimum obtained depends on initialization. Moreover, their
method requires the dimension of the latent common space to be known a priori. As op-
posed to their method, our model is convex which guarantees a global optimum, and can
find a latent common space with any dimension in a single optimization.

Exploiting latent spaces can be also found in related research studies, such as local metric
learning [1], hashing [5], multi-task learning [19], domain adaption [23] and ranking [32].
However, their goals are very different from the one in this paper.

3 Relatively-Paired Space Analysis
In this section, we describe our RPSA framework for learning a latent common space from
relatively-paired observations. The goal is to find linear mappings that project observations
from different modalities into a latent common space in which the relative proximities of the
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relatively-paired observations are preserved.

3.1 The RPSA Model
Consider a set of M modalities {Ω1,Ω2, . . . ,ΩM} with dimensions {d1,d2, . . . dM} respec-
tively, and a training dataset of N observations {x1,x2, . . . ,xN} with a corresponding flag
set {t1, t2, . . . , tN} such that ti ∈ {1, . . . ,M} indicates that xi comes from Ωti . Let the relative-
pairing knowledge of the observations be represented by a set of triplets S= {(i, j,k)}, where
each triplet (i, j,k) encodes that xi and x j are more-likely-paired than xi and xk. Note that
xi, x j and xk can come from either the same or different modalities. When they are from the
same modality, "being more-likely-paired" means "being more similar".

To learn a latent common space Z with dimension dz, we seek a dz×dm linear projection
matrix WΩm for each modality Ωm such that the relative proximities of the projections of the
relatively-paired observations are preserved in Z, i.e.,

d(i, j)≤ d(i,k) ∀(i, j,k) ∈ S, (1)

where
d(i, j) = ‖WΩti

xi−WΩt j
x j‖2 (2)

denotes the squared Euclidean distance between the projections of xi and x j in Z. Let W =
[W1 W2 . . .WM] and AΩm be a ∑dn×dm matrix with all elements being zero except for row
∑n<m dn +1 to row ∑n≤m dn being an identity matrix, such that WΩm = WAΩm . Substituting
this into (2) gives

d(i, j) = (AΩti
xi−AΩt j

x j)
TWTW(AΩti

xi−AΩt j
x j)

= Tr(ACi, j), (3)

where Tr(.) gives the trace of a matrix, A = WTW, and

Ci, j = (AΩti
xi−AΩt j

x j)(AΩti
xi−AΩt j

x j)
T. (4)

Substituting (3) into (1) gives

Tr(ACi,k)−Tr(ACi, j)≥ 0 ∀(i, j,k) ∈ S. (5)

(5) defines the relative proximity constraints on A which encodes W (i.e., the set of projec-
tion matrices). Since ti, t j, tk ∈ {1, . . . ,M}, there are M3 possible modality configurations
for a triplet (i, j,k). When ti = t j = tk, xi, x j and xk are from the same modality, and (5)
provides constraints in one modality which is the same as metric learning. Now to learn the
latent common space, we find a positive-semidefinite matrix A (i.e., A � 0.) which fulfills
constraints (5). Note that if A∗ is a solution, multiplying A∗ by any arbitrary positive scalar
will also give a solution. To specify a unique solution, we let Tr(A) = 1 and maximize the
distance margin, i.e.,

max ϕ

s.t. Tr(ACi, j,k)≥ ϕ, A� 0 and Tr(A) = 1, ∀(i, j,k) ∈ S, (6)

where Ci, j,k = Ci,k−Ci, j. By introducing a positive slack variable to each relative proximity
constraint (for improving robustness against noise), (6) can be reformulated into an SVM
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style [36] energy function, given by

min Tr(A)2 + γ1 ∑ξi, j,k
s.t. Tr(ACi, j,k)≥ 1−ξi, j,k, A� 0 and ξi, j,k ≥ 0, ∀(i, j,k) ∈ S,

(7)

where γ1 controls the relative weights of the regularization and loss terms. The regularization
term Tr(A)2 not only regularizes the ambiguous problem in (5), but also forces A to be a low
rank matrix. Inspired by [27], we employ Frobenius norm of A as the regularization term for
the sake of simplicity and scalability, and get

min ‖A‖2
F + γ2 ∑ξi, j,k

s.t. Tr(ACi, j,k)≥ 1−ξi, j,k, A� 0 and ξi, j,k ≥ 0, ∀(i, j,k) ∈ S,
(8)

where γ2 is set to 1 in all our experiments. Although using Frobenius norm regularization
does not theoretically guarantee a low rank optimum A∗, all our experiments validate that
a low rank approximation of A∗ is sufficient in practice (e.g., a rank-25 approximation of
A∗ with a dimension of 3840× 3840 performs well in cross-pose face recognition). (8)
can be efficiently optimized by maximizing its dual problem alternatively with eigenvalue
decomposition and off-the-shelf first order Newton algorithm such as L-BFGS-B [15].

After getting the optimum A∗, we obtain W by minimizing
∥∥A∗−WTW

∥∥
F. Suppose the

rows of W are orthogonal to each other, WTW will then be a positive-semidefinite matrix
with rank dz (i.e., the dimension of the latent common space Z). According to Eckart-Young
theorem [29], WTW will be the rank-dz approximation of A∗ . We perform eigenvalue
decomposition over the positive-semidefinite matrix A∗, getting A∗ = UΣUT with U being
an orthogonal matrix and Σ a real diagonal matrix with decreasing singular values σ1 ≥ . . .≥
σ∑dm . We obtain W = Σ′UT with Σ′ being a diagonal matrix with decreasing diagonal values√

σ1,
√

σ2, . . . ,
√

σdz ,0, . . . ,0. Linear projections WΩm for different dimensions of Z can be
obtained after optimizing (8) and one eigenvalue decomposition. Note that the appropriate
latent common space dimension dz is application dependent, and is determined by cross
validation in this paper.

3.2 Time Complexity
To solve problem (8), eigenvalue decomposition of A dominates the computation complexity
at each iteration if the number of constraints is not far more than the dimensionality of A.
The optimization algorithm can converge in a small number of iterations. After getting the
optimum A∗, one more eigenvalue decomposition is performed to obtain W. In this case, the
overall time complexity is O(t ·D3) with D = ∑dm and t being around 10 in our experiments.

3.3 Discussion
We would like to discuss the differences between our model and some related work with
exploiting latent spaces. Parameswaran and Weinberger [19] proposed multi-task metric
learning which learns a metric for each task and a common metric for multi-task. Each metric
is regularized separately, and only one task gets involved in each training triplet. Bronstein
and Bronstein [5] developed multi-modality hashing method in the Adaboost framework.
It has no regularization term and only uses similarity or dissimilarity pairs as constraints.
Wang et al . [32] learned a ranking function for each modality. It has no cross-modality
comparison and jointly regularizes ranking functions by l(2,1) norm. In [23], visual category
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models are adapted to new domains with information-theoretic regularization and similarity
or dissimilarity pairs as constraints. Therefore, Both the regularization and loss terms in
[5, 19, 23, 32] are different from the proposed RPSA. Frome et al . [1] proposed globally-
consistent local metric learning. It only learns a weight vector for each instance while a
projection matrix is learned for each modality in our model. Our final optimization problem
is semi-definite programming while theirs not, and thus the optimization methods are also
different. We stress the problems solved in all the above work are very different from the
one in this paper.

4 Experiments
We evaluated the performance of our proposed RPSA framework by applying it to cross-pose
face recognition and feature fusion.

4.1 Training Triplets
Training triplets (i, j,k) can be generated in an unsupervised or supervised fashion. This kind
of relatively-paired data can be collected from clickthrough data of search engines. It can
also be generated from labels based on the principle that observations with the same label
are expected to be more-likely-paired than those with different labels. Let li denote the label
of an observation xi. Given a pair of cross-modality observations (xp,xq) (where tp 6= tq)
for an object, we define four types of triplets to describe the relative-pairing knowledge (see
Table 1). Each triplet (i, j,k) suggests that xi is more-likely-paired with x j than with xk.
Euclidean distance between two observations is used in defining nearest neighbor in Table 1.
Figure 1 gives a graphical illustration for these four types of triplets. If the numbers of these
four types of triplets are n1, n2, n3 and n4, respectively, for each given pair (xp,xq), we
say that the training data have a structure of (n1,n2,n3,n4). The total number of triplets is
therefore (n1 +n2 +n3 +n4)×Np, where Np is the number of pairs.

Table 1: Four types of triplets defined for describing relative-pairing information of a given
pair of observations (xp, xq).

Type Form Num. Remark

1 (p,q,q1) n1
xq1 is the kth (k ≤ n1) nearest neighbor of xq

s.t. tp 6= tq ∧ tq = tq1 ∧ lp = lq ∧ lq 6= lq1

2 (q, p, p1) n2
xp1 is the kth (k ≤ n2) nearest neighbor of xp

s.t. tq 6= tp ∧ tp = tp1 ∧ lq = lp ∧ lp 6= lp1

3 (p, p1, p2) n3
xp1 is the kth (k ≤ n3) nearest neighbor of xp s.t. tp = tp1 ∧ lp = lp1
xp2 is the kth (k ≤ n3) nearest neighbor of xp s.t. tp = tp2 ∧ lp 6= lp2

4 (q,q1,q2) n4
xq1 is the kth (k ≤ n4) nearest neighbor of xq s.t. tq = tq1 ∧ lq = lq1
xq2 is the kth (k ≤ n4) nearest neighbor of xq s.t. tq = tq2 ∧ lq 6= lq2

4.2 Cross-Pose Face Recognition
Faces observed under a particular pose can be considered as being sampled from one modal-
ity, and therefore faces observed under different poses correspond to different modalities.
RPSA can be used to recognize faces under different poses, in which gallery faces are in
one pose while probe faces are in another pose. Note that our method requires knowing the
rough pose of each photo (i.e., to which modality it belongs) as in [24]. CMU PIE face
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Type 1 Type 2 Type 3 Type 4
Figure 1: Four types of triplets defined for describing relative-pairing information of a given
pair of observations (xp, xq). xpL9999Kxq means xp and xq are paired observations from
different modalities. Grids on the same horizontal line contain cross-modality observations
with the same label.

database 1 was used in our experiments. This data set consists of 68 subjects, each of which
has face photos in 13 different poses (indexed by c27/05/29/37/11/07/09/02/14/22/34/25/31).
Photos in the same pose were aligned by the eyes and mouth. All photos were cropped and
down-sampled to 48× 40. Each photo was then reshaped into a column vector giving an
observation xi. In our experiments, subject 1 to 34 were used as training data, while the rest
were used as testing data. In the training phase, we derived a set of triplets for each training
pair with a structure of (5,5,0,0). We therefore had 10× 34 triplets in total. The learned
latent common space had a dimension of 25. In the testing phase, the nearest gallery face
of each probe face was found in the learned latent common space, and the recognition rates
were reported.

In Table 2, we compare our method with those using frontal faces (photos indexed by c27
in CMU PIE dataset) as gallery, in terms of mean recognition rates over different subsets of
probe poses. It can be seen that RPSA is only slightly worse than TFA [20], but outperforms
all the others. Note that TFA requires 14 user-elaborately-clicked points for photo alignment
and Gabor filter for extracting complex features, whereas our method only needs 3 points
(eyes and mouth) for photo alignment and directly employs the face image as a feature vector.
We also compare our method with PLS [24] which, to the best of our knowledge, reports the
best performance in the recent literature. It can be seen that our method is better than PLS
when frontal faces are used as gallery and faces with other poses as probes.

Table 2: Mean recognition rates for frontal faces (c27) gallery.
Gallery Probe Method Accuracy Method Accuracy

c27 c05/37/25/22/29/11/14/34 PGFR [16] 0.86 RPSA 0.94
c27 c05/22 TFA [20] 0.95 RPSA 0.93
c27 c05/29/37/11/07/09 LLR [6] 0.95 RPSA 1.00
c27 c05/29/37/11/07/09 ELF [11] 0.90 RPSA 1.00
c27 c05/29/37/11/07/09/02/14/22/34/25/31 PLS [24] 0.94 RPSA 0.95

4.3 Feature Fusion

For classifying patterns with different kinds of features stemming from different sources,
a critical issue is to efficiently utilize these cross-modality features. A common solution
is feature fusion by first projecting cross-modality features into a latent common space to

1http://vasc.ri.cmu.edu/idb/html/face/
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reduce dimension and suppress noise, and then adding the paired projections together as a
final feature vector. The fused feature for two modalities [30, 37] is usually given by

y = WΩti
xi +WΩt j

x j, (9)

where xi and x j are two feature vectors in different modalities for one object (i.e., ti 6= t j).
The proposed method was used to fuse features of UCI Multiple Features dataset2. This

dataset consists of 2000 instances of ten hand-written numerals (‘0’-‘9’). Each instance has
six features, namely Fou, Fac, Kar, Pix, Zer and Mor, with dimensions 76, 216, 64, 240,
47, and 6 respectively. We considered each feature as one modality. In our experiment,
any two kinds of features were selected to fuse, and we had C6

2 = 15 combination pairs.
In the training phase, for each feature pair, the number of training data for each digit (Nt )
was set to 4, 10 or 100. We derived a set of relatively-paired observations with a structure
of (4,4,3,3). Therefore, the total number of triplets is (14×Nt × 10). The latent common
space had a dimension of 25, except for feature pairs involving Mor where it had a dimension
of 6. In the testing phase, we find the nearest training fused feature with label for each testing
fused feature. The experiment was repeated 10 times by randomly selecting fixed number
of training data (i.e., Nt × 10, here 10 is the number of digit categories). We evaluated our
method by mean recognition rates and standard deviations.

Table 3: Mean recognition rates and standard deviations on UCI Multiple Features dataset.
Pairs Nt = 4 Nt = 10 Nt = 100

PCA CCA RPSA PCA CCA RPSA PCA CCA RPSA
Fac Fou 0.78±0.03 0.72±0.02 0.83±0.02 0.84±0.01 0.76±0.02 0.89±0.01 0.94±0.01 0.86±0.01 0.97±0.00
Fac Kar 0.79±0.03 0.75±0.02 0.82±0.02 0.86±0.01 0.82±0.02 0.89±0.01 0.94±0.01 0.95±0.00 0.98±0.01
Fac Pix 0.78±0.04 0.73±0.03 0.83±0.03 0.86±0.03 0.84±0.02 0.91±0.01 0.94±0.01 0.93±0.00 0.98±0.00
Fac Zer 0.79±0.03 0.58±0.05 0.83±0.03 0.86±0.01 0.69±0.02 0.90±0.01 0.95±0.01 0.84±0.01 0.97±0.01
Fac Mor 0.76±0.03 0.32±0.28 0.80±0.04 0.82±0.02 0.27±0.26 0.84±0.02 0.88±0.01 0.74±0.01 0.92±0.01
Fou Kar 0.61±0.07 0.57±0.05 0.77±0.03 0.72±0.04 0.55±0.03 0.87±0.01 0.85±0.02 0.88±0.01 0.97±0.00
Fou Pix 0.75±0.03 0.58±0.04 0.84±0.03 0.85±0.02 0.61±0.03 0.92±0.01 0.95±0.01 0.77±0.01 0.98±0.00
Fou Zer 0.50±0.03 0.48±0.04 0.71±0.03 0.65±0.02 0.46±0.03 0.77±0.01 0.77±0.01 0.80±0.01 0.85±0.01
Fou Mor 0.52±0.05 0.30±0.25 0.59±0.04 0.53±0.02 0.52±0.02 0.63±0.02 0.63±0.01 0.75±0.01 0.74±0.01
Kar Pix 0.76±0.03 0.67±0.04 0.80±0.03 0.86±0.01 0.80±0.02 0.90±0.01 0.96±0.01 0.95±0.01 0.97±0.00
Kar Zer 0.64±0.05 0.52±0.04 0.77±0.04 0.76±0.02 0.60±0.02 0.86±0.01 0.90±0.01 0.88±0.01 0.94±0.01
Kar Mor 0.58±0.05 0.28±0.24 0.64±0.04 0.69±0.05 0.57±0.03 0.71±0.03 0.77±0.01 0.77±0.02 0.84±0.02
Pix Zer 0.76±0.03 0.56±0.05 0.82±0.03 0.86±0.01 0.67±0.02 0.89±0.01 0.95±0.01 0.80±0.01 0.95±0.00
Pix Mor 0.74±0.04 0.31±0.26 0.77±0.04 0.82±0.02 0.27±0.25 0.82±0.03 0.87±0.01 0.71±0.01 0.88±0.02
Zer Mor 0.49±0.05 0.26±0.13 0.63±0.04 0.54±0.03 0.62±0.02 0.68±0.01 0.61±0.01 0.73±0.01 0.72±0.02
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Figure 2: Mean recognition rates and standard deviations of PCA, CCA, and RPSA under
different latent common space dimensions.

We first compared our method with PCA which reduces dimension independently in each
modality, and Canonical Correlation Analysis (CCA) [4] which is a representative multi-
feature fusion approach. In our experiments, both PCA and CCA kept the same latent com-
mon space dimension as RPSA. It can be seen from Table 3 that our method outperforms

2http://archive.ics.uci.edu/ml/datasets/Multiple+Features
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Table 4: Recognition rates on Multiple Features Dataset.
Pairs DCCA bgCCA bgDCCA bsCCA bsDCCA PLS RCE RPSA

Fac Fou 0.89 0.86 0.89 0.84 0.88 0.94 0.95 0.97
Fac Kar 0.98 0.95 0.98 0.93 0.98 0.94 0.98 0.98
Fac Pix 0.97 0.86 0.97 0.86 0.97 0.94 0.95 0.98
Fac Zer 0.88 0.86 0.88 0.84 0.87 0.96 0.97 0.97
Fac Mor 0.82 0.75 0.82 0.74 0.81 0.88 0.88 0.92
Fou Kar 0.90 0.90 0.90 0.88 0.89 0.97 0.96 0.97
Fou Pix 0.89 0.77 0.89 0.74 0.87 0.98 0.95 0.98
Fou Zer 0.83 0.82 0.83 0.80 0.81 0.81 0.85 0.85
Fou Mor 0.77 0.75 0.77 0.74 0.76 0.44 0.80 0.74
Kar Pix 0.95 0.94 0.95 0.93 0.94 0.98 0.96 0.97
Kar Zer 0.88 0.90 0.88 0.89 0.86 0.83 0.96 0.94
Kar Mor 0.80 0.77 0.80 0.76 0.79 0.62 0.86 0.84
Pix Zer 0.87 0.83 0.87 0.80 0.86 0.84 0.94 0.95
Pix Mor 0.79 0.73 0.79 0.71 0.77 0.71 0.84 0.88
Zer Mor 0.75 0.72 0.75 0.70 0.74 0.72 0.77 0.72

both PCA and CCA with impressive margin for all the cases, except for Zer-Mor feature pair
with Nt = 100. Besides, RPSA performs reasonably well even when having only 4 train-
ing instances for each digit (i.e., Nt = 4). This is expected since RPSA is a discriminative
model and it does not need any distribution assumption which usually needs many training
samples for a good estimation or fitting. Figure 2 shows the recognition rates under different
latent common space dimensions for Fac-Fou feature pair. For Nt = 4 and Nt = 10, RPSA
is slightly poorer than PCA and CCA when the dimension of the latent common space is
less than 10 (see Figure 2 (a) and (b)). In fact, both PCA and CCA also have very low
recognition rates under such settings, and it is therefore impractical to learn an extremely
low dimension latent common space for pattern recognition. Nonetheless, this problem can
be avoided by optimizing (7) with trace regularization. When the number of training data
increases, our method performs much better than PCA and CCA under all dimensions of the
latent common space (see Figure 2 (c)).

The proposed method was also compared with Discriminative Canonical Correlation
Analysis (DCCA) [30], Partial Least Squares (PLS), bgCCA, bgDCCA, bsCCA, bsDCCA
(two kinds of variants of CCA and DCCA ) and Random Correlation Ensemble (RCE) [37].
For fair comparison, all the methods employ nearest neighbor method as classifier. The re-
sults of competitors are from Table 2 in [37]. From Table 4, we see that RPSA is superior to
DCCA, bgCCA, bgDCCA, bsCCA, bsDCCA and PLS in most cases. RPSA shows advan-
tages compared with RCE, although RCE is a sophisticated method which first finds random
cross-view correlations between within-class examples and then boosts performance by en-
semble learning. Similarly, our method can also be further improved by ensemble learning.

5 Conclusion and Future work

In this paper, we have proposed a framework called Relatively-Paired Space Analysis (RP-
SA) which can automatically learn a latent common space between multiple modalities from
relatively-paired observations. Relative-pairing can explore more general semantic relation-
ships between observations than absolute-pairing, and allows easy integration of label infor-
mation. Theoretically, RPSA is a discriminative model which does not assume any parameter
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or noise distribution, and is a general framework which can be used in any cross-modality
pattern recognition. We have evaluated the performance of RPSA by applying it to cross-
pose face recognition and feature fusion. Experimental results show that RPSA outperforms
other state-of-the-art techniques, some of which are tailored for the particular problems. We
have made the code available online (http://i.cs.hku.hk/∼zhkuang/Software.html). In future
work, we would like to extend RPSA to a nonlinear version.
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