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1 Motivation

In specific application areas, obtaining higher order motion information is
of great interest. An example of such information is the Lagrangian strain
tensor [3] that plays a vital role in mechanical engineering. Since this ten-
sor is computed by means of first-order motion derivatives, it is tempting
to estimate the optical flow field with a highly accurate variational model
and compute its derivatives afterwards. However, this procedure yields
in general not very good results because of the following reasons: First,
these derivatives have to be obtained via numerical differentiation. Dif-
ferentiation is a classical ill-posed problem where small fluctuations in
the data can cause large deviations in the result [1]. Secondly, most high-
accurate models make use of a first-order smoothness assumption that
causes the results to be biased towards translational motion; see e.g. [5].

2 Contribution

In this paper, we propose a novel approach for deriving higher order vari-
ational models that offer the following advantages: They directly esti-
mate regularised versions of the motion derivatives, which circumvents
the problems of numerical differentiation. Moreover, they deploy higher
order smoothness assumptions that do not suffer from translational bias.

3 Our Recursive Approach

First we consider a baseline model that we want to extend. For instance, a
variational approach for optical flow computation can be based on a Horn
and Schunck model [2] with a data term that can handle large displace-
ments. It computes the motion flow field u between two images f1 and f2
defined on Ω⊂ R2 as minimiser of the energy functional
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This method suffers from the aforementioned drawbacks: It only esti-
mates the motion between the images, and the first-order smoothness term
S1 prefers solutions biased towards translational motion.

As a remedy, we derive a new model that replaces S1 by two new
terms. It minimises the energy
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∫
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The new terms have the following effects: The similarity term M causes
the matrix-valued function A = [ai, j]2×2 to contain estimates of the first-
order motion derivatives that can be used for the strain tensor computa-
tion. Furthermore, the first-order smoothness term S2 ensures that these
estimates are regularised. Finally, combining M and S2 yields a second-
order smoothness assumption for the motion u, which no longer causes
the translational bias.

Figure 1: (a) Left: Two frames of the biaxial tensile experiment with the
areas of interest colored in purple. (b) Right: Enlarged versions of the
respective areas of interest.

Figure 2: Results for the strain in y-direction obtained from differ-
ent methods. (a) Left: Numerical differentiation of optical flow field.
(b) Centre: Higher order model obtained from presented approach.
(c) Right: Commercial software Vic-2D.

This procedure may be repeated by using E2 as the baseline model
and replacing S2, which indicates that this approach is of generic nature
and therefore can be used to derive models of arbitrary order n.

4 Experiment

In order to assess the performance of our new approach, we consider im-
age data of a biaxial tensile experiment that is often conducted in mechan-
ical engineering [4]. We consider the area of interest depicted in Figure
1. In Figure 2, we observe that a higher order model obtained from the
presented approach gives much better results than a direct numerical dif-
ferentiation of the optical flow field. Last but not least, our model is also
able to outperform the commercial software Vic-2D that belongs to the
leading tools for evaluating data of such experiments.
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