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An axial camera is a particular case of a non-central camera where ev-
ery back-projection ray intersects a line in 3D (the axis). The axial camera
can be used to model vision systems and imaging situations of practical
interest. Examples include any catadioptric system that combines a rev-
olution mirror with a central camera for which the viewpoint is aligned
with the mirror axis (e.g. a pinhole looking at a spherical mirror) [8]; the
situation of a perspective camera looking through multiple flat refractive
mediums [1]; or a multi-camera rig composed by two or more pinhole
cameras with collinear optical centers [3].

This paper addresses the problem of estimating the translation t and
the rotation R between two axial cameras using point correspondences.
Pless showed that this problem can be linearly solved from a minimum of
17 point correspondences using a DLT like approach [4]. Later in [3, 7]
it was observed that for the case of axial cameras this linear estimation
could be accomplished from 16 point correspondences.

The relative pose problem has 6 unknowns meaning that in theory
6 point correspondences provide enough information for determining the
relative rotation and translation of the axial camera. Stewenius et al. pro-
posed in [6] a minimal solution for the relative pose between generalized
cameras. However, their algorithm is complex, provides a large number
of possible solutions (up to 64), and, as reported in [3], it degenerates for
most axial camera configurations. This article does not provide a mini-
mal solution for the relative pose between axial cameras, but shows how
the motion can be computed using as few as 10 point correspondences.
Our 10-point method is an advance with respect to the previous 16-point
[3, 7].

Given that all back-projection rays of an axial camera intersect its
axis, they belong to a linear line congruent of dimension 4 [5]. This means
that all rays can be represented by 5 dimensional coordinate vectors λi that
are a linear combination of 5 base lines aligned with the axes x, y, z, ŷ, ẑ
in Fig. 1(a).

Given a set of intersecting ray correspondences (λi,λ
′
i ), we can es-

tablish linear relations with the form

λi
TΦλ

′
i = 0 (1)

with Φ being a 5×5 matrix that encodes the 4 essential matrices displayed
in Fig. 1(b)

( (Φ=

E1 = Φ{1:3,1:3} = [t]×R (2)

E2 = Φ{1:3,3:5} = [Rv+ t]×RW (3)

E3 = Φ{3:5,1:3} = [WT(t−v)]×WTR (4)

E4 = Φ{3:5,3:5} = [WT(Rv+ t−v)]×WTRW (5)

The matrix Φ has 17 free parameters, and therefore can be linearly
estimated from 16 correspondences.

Additionally, the following family of matrices

Ei = αE1 +βE2WT+ γWE3 +δWE4WT, ∀α,β ,γ,δ ∈ℜ (6)

must have the properties of an essential matrix, and therefore verify the
following nonlinear constraints

2EiEi
TEi− tr(EiEi

T)Ei = 0 (7)

detEi = 0 (8)

This makes us able to solve the problem using just 10 correspondences
(λi,λ

′
i ) by first generating a 7 dimensional linear subspace for Φ and then
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Figure 1: A new parameterization for axial cameras
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(b) Trajectory

Figure 2: Performance comparison between 10-point algorithm and 16-
point algorithm with real data.

solving a system of cubic equations in 6 variables, with the action matrix
technique [2].

The algorithm is validated and compared against the 16-point algo-
rithm [3] for estimating the relative pose between stereo camera pairs,
using both synthetic and real input data (Fig. 2), and showing that our
algorithm has a superior performance.

Our long-term goal, however, is to reach a 6-point minimal algorithm,
which will require a more in-depth study of the non-linear relations be-
tween the essential matrices described in this paper.
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