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Abstract

This paper presents a method for recovering deformable shape and motion from un-
calibrated 2D video sequence in the presence of missing data. Highly deformable shapes
are hard to describe under previously used assumptions, such as global constraint en-
forcing shapes to lie within a linear subspace. Considering that the data dimensionality
may not represent the true complexity of the problem, we suggest that the shapes can be
well-modelled in a low dimensional manifold. However, building a dense representation
of the manifold requires a large amount of training data which is not feasible in many
real applications. The main contribution of this paper is to propose a novel approach
for estimating accurate 3D reconstructions utilising manifold learned from a relatively
small number of training samples. The problem is addressed by grouping shapes into
evolving clusters, with the shapes in each cluster represented in the linear subspace, es-
timated based on the observations and the prior learned manifold. Results are presented
using motion capture data and real video sequences, showing that the proposed method
can better model shapes with complex deformations compare to several state-of-the-art
techniques, and is robust against noise and missing data.

1 Introduction
Structure from motion (SfM) is defined as a problem of modelling 3D objects and estimating
corresponding camera motion trajectories based on a set of observed images. While recon-
structing 3D geometry has been well-studied under the assumption of object rigidity [11], in
many real applications, such as the human face or body, objects often deform over time.

To extend the rigid SfM to the case of 3D deformable objects, a low rank shape model
has been widely used in the non-rigid and articulated object reconstructions [15, 19]. In
addition, since the high number of degrees of freedom and motion degeneracy may lead to
the methods failing to obtain meaningful reconstructions, prior information can be used to
improve the quality of recovered shapes and motion [8]. Another class of algorithms, so
called trajectory approaches were inspired by the shape basis model but using predefined ba-
sis trajectories instead of estimated basis shapes, thus removing a large number of unknowns
from the optimisation [1, 9, 10]. Template based reconstruction usually relies on a known
reference frame and works well especially for reconstruction of inextensible surfaces, but a
common drawback of this approach is that the initialisation has to be close to the solution
[5].
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The problem becomes more difficult when the observations are incomplete. The meth-
ods addressing this problem can be divided into three categories: imputation, alternation and
non-linear optimisation. Imputation algorithms attempt to fill in the missing data entries us-
ing complete subset of the data [18, 22]. These methods are simple but cannot handle real
data, which often tend to be very noisy. Alternation algorithms solve the problem based on
closed-form solution using a rank constraint imposed on the measurement matrix without
estimating the missing values in advance [13, 15]. Most existing methods for this problem
followed this idea by iteratively updating motion and shape in terms of observed measure-
ments [10]. Note that optimising the complete matrix using only rank constraint is often
not sufficient, but for these methods it is difficult to incorporate additional constraints [9].
Therefore a careful initialisation is needed, otherwise the results can easily drift into a local
minima. Non-linear optimisation is a direct solution for shape and motion recovery when
measurement data are missing. Even though the inherently high number of degrees of free-
dom may lead to failure of obtaining reliable 3D reconstructions, additional constraints can
naturally be included in the cost function.

Novelty. The main contribution of this paper is a novel approach for recovery of 3D non-
rigid structures with large and/or complex deformations. The proposed method is shown to
be flexible allowing a method extension to handle the case with missing measurements e.g.
due to occlusion or feature track loss. The proposed method is based on a recently intro-
duced manifold learning technique, Diffusion maps [6]. As claimed in [16], building a dense
representation of the manifold enables to achieve better reconstruction performance when
compared to other state-of-the-art approaches, but collecting sufficient number of training
data may not be feasible in practice. The algorithm described in this paper is an improved
version of the algorithm proposed in [16], with three main differences. First, the improved
algorithm enables reconstruction with small number of training samples. Second, the pro-
posed cost function includes additional term to relax the constraint on local basis shapes.
Unlike in [16] these shapes do not have to match the local training samples. Third, the pro-
posed algorithm has additional step solving the missing data problem. Despite the fact that
manifold learning techniques are becoming increasingly popular in many different areas,
such diffusion maps based approach has rarely been applied in the context of motion and
non-rigid shape reconstruction, especially with missing data.

2 Problem statement

2.1 Formulation
In the case of non-rigid objects, the 3D shapes deforms throughout the time which makes
the problem more difficult to solve. Assuming that a set of image feature points have been
tracked in the 2D image sequence viewed by an orthographic camera, the problem consists
of shapes S =

{
S1, . . .S f

}
and camera rotationR=

{
R1, . . . ,R f

}
, recovery from 2D obser-

vations Y =
{

Y1, . . . ,Y f
}

, thus can be formulated as the following optimisation problem,

argmin
Rt ,St

f

∑
t=1
‖Yt −P ·Rt ·St‖2 (1)

where P represents a known orthographic camera projection matrix, Yt represents the 3D
points projected onto tth image. The camera translation can be eliminated, by expressing 2D

Citation
Citation
{Tomasi and Kanade} 1992

Citation
Citation
{Zaheer, Akhter, Baig, Marzban, and Khan} 2011

Citation
Citation
{Marques and Costeira} 2009

Citation
Citation
{Paladini, Bue, Xavier, Stosic, Dodig, and Agapito} 2009

Citation
Citation
{Gotardo and Martinez} 2011

Citation
Citation
{Gotardo and Martinez} 2008

Citation
Citation
{Coifman and Lafon} 2006

Citation
Citation
{Tao and Matuszewski} 2013

Citation
Citation
{Tao and Matuszewski} 2013

Citation
Citation
{Tao and Matuszewski} 2013



TAO, MATUSZEWSKI: 3D RECONSTRUCTION WITH DIFFUSION MAPS 3

observations with respect to the data points centroid calculated for each observed image.
According to the shape basis assumption, shape St can be represented as a linear combi-

nation of n unknown but fixed basis shapes Bl , St = ∑
n
l=1 θtlBl , while the shape coefficients

θtl are adjustable over time. Therefore the measurement can be rearranged as:

Y =

Y1
...

Y f

=

θ11P ·R1 · · · θ1nP ·R1
...

. . .
...

θ f 1P ·RF · · · θ f nP ·RF


−B1−

...
−Bn−

= MB (2)

2.2 The diffusion framework
Diffusion maps have become a popular method in data dimensionality reduction given their
capability to recover underlying structures of a complex manifold, robustness to noise, data
outliers, and efficient implementation.

Let X = {X1 . . .XM} be a dataset with M training samples lying on an n dimensional
manifoldM embedded in a higher-dimensional space RN . The idea of dimensionality reduc-
tion is to learn a low dimensional representation {x1 . . .xM} with xi ∈ Rn,n� N preserving
implicit structure of the data. A mapping is defined by Ψ :X 7→Ψ(X ), with the optimal em-
bedding provided by eigenvalues λl and associated eigenvectors ϕl of the Laplace-Beltrami
operator [7], such as,

Ψ(Xi) 7→ [λ1ϕ1(Xi), · · · ,λnϕn(Xi)]
T (3)

The details of building approximated Laplace-Beltrami operator can be found in [16].

3 Deformable shape reconstruction
The method presented in [16] introduced the non-linear manifold, learned based on 3D train-
ing samples, as shape prior for non-rigid shape reconstruction. Given the learned shape
manifold and the observed 2D measurements, the algorithm iteratively refines the 3D recon-
structed shapes for each frame by using its n+1 nearest shape neighbours on the manifold,
as basis shapes. Although the method is able to achieve high quality shape reconstructions,
the requirement of large number of training data to build a sufficiently dense representation
of the manifold is not feasible for most real applications. To overcome this, the method pro-
posed in this paper relaxes the constraint for basis shapes so as to make the algorithm more
adaptable to the case when only a relatively small number of training samples have been
used for the manifold learning.

3.1 Mapping and inverse mapping for previously unseen data
The diffusion maps can only provide embedding for the given training data without a clear
strategy for embedding shapes which are not presented in the training set. Re-training of the
whole manifold is impractical due to the computation cost. The out-of-sample issue was first
demonstrated in [3] and applies to several spectral algorithms for manifold learning. The
method proposed in [2] projects the previously unseen data St ∈ RN onto the lower dimen-
sional feature space, such as St 7→

(
Ψ̂1(St) · · ·Ψ̂n(St)

)
. For each new shape, an embedding

Ψ̂ is calculated by an approximation technique based on the Nyström extension.
Initial shapes and camera motion are estimated by running a few iteration of the optimi-

sation process using a linear method [17].
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Once the initial shapes have been embedded into a lower dimensional space, finding their
inverse mapping (the pre-image problem) can help to update shapes. However, the exact
pre-image typically does not exist, and the problem can only be defined as an approximate
solution [12]. Suppose we have an embedded point bt ∈ Rn, a Delaunay triangulation [4]
can be computed in n dimensional reduced space, enabling selection of n+1 nearest neigh-
bours xtl of bt . Each point bt can be represented as bt = ∑

n+1
l=1 θtlxtl , where the coefficients

θ =
{

θt1, . . . ,θt(n+1)
}

are the barycentric coordinates of bt and the inverse mapping can be
formulated as,

Ψ̂
−1(bt) = ∑

n+1
l=1 θtlXtl with ∑

n+1
l=1 θtl = 1,0≤ θtl ≤ 1 (4)

where training sample Xtl is the pre-image of xtl .

3.2 Shape clustering
Given a set of estimated shapes S =

{
S1, . . .S f

}
, the aim of the clustering is to partition f

shapes into K clusters, in which the shapes have similar structure, with each shape cluster
denoted by Ti, i∈ 1 . . .K. The clusters are obtained by performing the Delaunay triangulation
in the reduced space. As defined in [4], any “angle-optimal” triangulation of a set of points
is a Delaunay triangulation of these points. This can help to avoid “skinny triangles”, for
which the corresponding shape of each vertex could be significantly different, thus may lead
to meaningless reconstructions.

Diffusion maps are based on distance preserving mapping, meaning that the points rela-
tively close in reduced space correspond to the similar shapes. As a consequence we stipulate
that the points in the reduced space belong to the same Delaunay simplex (i.e. cluster), can
be modelled by the same linear subspace embedded in RN , and therefore all corresponding
reconstructed shapes (represented by that cluster) can be approximated by a linear combina-
tion of the same set of unknown but fixed basis shapes. Thus all the shapes in the cluster i can
be represented as St = ∑

n+1
l=1 θtlBi

l ,∀t ∈ Ti, where a set of basis shapes Bi =
{

Bi
1 . . .B

i
n+1
}

is
spanning the tangent linear subspace representing all the shapes from the cluster i.

The reconstructed shapes are often different from the training samples, therefore cannot
be perfectly mapped into the manifold M. As the result we relax the constraint for the
basis shapes, only “encouraging” them to be close to the basis shapes spanning the tangent
subspace, instead of being exactly the same. The additional constraint applied to the ith set
of basis shapes is,

ε
i
bs =

n+1

∑
l=1

∥∥Bi
l−Xi

l

∥∥2
,Xi

l ∈ X (5)

Figure 1 illustrates an example of how the initial shapes are redistributed in the reduced
space after algorithm has converged. As shown in (a) the initial shapes are embedded in
a two dimensional space which fall into three clusters, K = 3. (b) shows the embedding of
optimal shapes which produced by the non-linear optimisation (see Section 3.3) with K = 11.

This approach differs from the one presented in [16] as all the shapes belonging to the
same cluster are being jointly optimised, whereas in [16] all the shapes would have been
reconstructed independently if not for the temporal smoothness constraint(not used in the
algorithm proposed in this paper). Additionally the proposed algorithm relaxes the constraint
on the tangent subspace as it only encourages that the basis shapes to be “close” to this
subspace.
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Figure 1: Delaunay triangulations (blue line) in the reduced space; Left: Embedded initial
shapes (green dots) in a reduced space and the actual used triangles (red line), together with
representative corresponding shapes from the total of 40 training samples; Right: Embedded
reconstructed shapes (green dots) in a 2D reduced space and the actual used triangles (red
line), with some reconstructed shapes

3.3 Non-linear refinement
The parameters θtl ,Bi

l and Rt are optimised simultaneously by minimising the 2D re-projection
error with additional constraints on basis shapes and rotation matrices. The cost function can
be written as,

E(Rt ,Bi
l ,θtl) = ∑

t∈Ti

∥∥∥∥∥Yt −P ·Rt

n+1

∑
l=1

θtlBi
l

∥∥∥∥∥
2

+λBε
i
bs +λR ∑

t∈Ti

εrot (6)

where εrot =
∥∥RtRT

t − I
∥∥ enforces orthonomality of all Rt . The parameters λB and λR are

regularisation constants selected experimentally. A non-linear optimisation based on bundle
adjustment using Levenberg-Marquardt algorithm was applied to minimize this cost func-
tion.

Because the quality of the provided initial shapes may seriously affect the results of the
optimisation, we try to avoid this by updating the basis shapes Bi(re-cluster the data) and the
corresponding shape coefficients in each iteration until 2D measurement error is less than the
defined threshold (10−3 in this case) and the error between two adjacent frames is relatively
small. The pre-image of the vertices of Delaunay triangles are used to constraint the basis
shapes, Figure 1 shows which Delaunay simplexes are being used along the iterations. The
algorithm for iteratively 3D shape estimation is summarised in Algorithm 1.

4 Reconstruction with Missing Data
The algorithm described above assumes the measurements Y are complete, all the feature
points are identified in all the images in the sequence. In practice, some of the points cannot
be detected in all the images due to the occlusions, feature detection problems, or tracking
failures and therefore acquiring complete set of measurements is unlikely. We present two
methods which efficiently handle the case of missing data in the shape estimation problem.

4.1 Linear approach
If the input data is incomplete, instead of considering more complex and time-consuming
optimisation algorithms, we briefly summarise a recently proposed linear method based on
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Algorithm 1 Iteratively 3D shape estimation
Input: 2D points with known correspondence, diffusion map calculated from the training

dataset X .
1: Initialisation: Obtain initial shapes S′ and camera motion R′. for each frame t.
2: repeat
3: Compute the embedding Ψ̂ of new shapes St 7→ Ψ̂(St)
4: Find n+ 1 nearest neighbours xtl and its corresponding training samples Xtl of the

embedded point bt
5: Calculate the barycentric coordinates θtl of bt
6: Perform clustering Ti of the estimated shapes S
7: Refine θtl ,Bi

l ,Rt as to the cost function Eq. 6
8: Update the reconstructed 3D shapes S′t = ∑

n+1
l=1 θtlBi

l
9: Set St = S′t

10: until (‖r‖> rT )and
(
‖rt‖−‖rt−1‖> 10−3

)
Output: 3D reconstructed shapes S and camera motionR.

Principal Component Analysis (PCA) [17], with the missing data recovered before estimat-
ing the shapes and motion.

Assuming p feature points lie on the surface of an object, we set I = Π̄t + Π̄∗t , where I
is the identity matrix and Π̄t is a p× p diagonal matrix such that Π̄t(k,k) = 0 indicates that
the point k is missing in image t, otherwise Π̄t(k,k) = 1. The observations of time t can
be represented as Ŷt = YtΠt and the missing measurements as Ŷ∗t = YtΠ

∗
t , where matrix

Πt and Π∗t are obtained from Π̄t and Π̄∗t by removing all columns for which entries are all
zeros. According to Eq. 2, measurements can be factorised using motion M and shape bases
B matrices, the incomplete measurement can be written as: Ŷt = MtBΠt .

We firstly compute the motion matrix Mt using the available 2D measurements and the
eigenshapes E, approximating the unknown bases B, obtained from the training dataset X ,
Mt = Ŷt(EΠt)

†, where (·)† indicates Moore-Penrose pseudo-inverse. The missing entries
can be calculated as Ŷ∗t = MtEΠ∗t . Thus the completed measurement matrix is,

Yt = ŶtΠ
T
t + Ŷ∗t Π

∗
t

T (7)

4.2 Non-linear approach

Since PCA is a linear manifold, the linear method is only able to cope well with small de-
formations. Although the method is not suitable when the deformations are relatively large
or complex, it still can be used for providing a good starting point for the optimisation using
the non-linear approach. The diffusion maps based method can be easily extended to handle
the case with missing data. To facilitate this, modification of the Eq. 6 is introduced where
the cost function can be rewritten as E(Rt ,Bi

l ,θtl ,YtΠ
∗
t ). And therefore depends explicitly

on the missing observations YtΠ
∗
t . As results the cost function in Eq. 6 is simultaneously

minimised with respect to rotation, shape basis, shape coefficients and the missing observa-
tions. It should be pointed out that we only optimise the missing entries in the observation
not the whole 2D measurements Yt .
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Figure 2: 3D error as function of the number of training samples for the cardboard data.

5 Experiments
We evaluate the performance of the proposed diffusion maps algorithm on both motion cap-
ture and real data. Several state-of-the-art algorithms are compared in our experiments: CSF:
The column space fitting method [9]. KSFM: The kernel non-rigid structure from motion
approach [10]. IPCA: The incremental principal components analysis based method [17].
DM1: The diffusion maps based method without basis shape optimisation, requiring large
amount of training data [16] DM2: The proposed method.

Data used for evaluation include: two articulated face sequences, surprise and talking,
both captured using passive 3-D scanner with 3D tracking of 83 facial landmarks [14]; two
surface models, cardboard and cloth [20]; and human action sequence yoga from CMU mo-
tion capture database 1. Diffusion maps require training, for the face and surface sequences
training datasets are taken from the BU-3DFE facial database [21] and from [20] respec-
tively. Since no separate training data are provided for human action, then we use part of the
frames for manifold learning and the rest for testing. All the training data has been rigidly
co-registered. The same testing data has been applied for other methods which do not need
training. We projected the 3D data using simulated orthographic camera.

In the following experiments, the reconstructed shapes are aligned using a single global
rotation based on Procrustes alignment [1], and the errors are compared using normalised
means of the 3D error [10] over all frames and all points.

5.1 Quantitative evaluation
As it was stipulated in the previous sections, only a small number of training samples are
required by the proposed method. We firstly investigate the effect of the number of training
shapes on the reconstruction accuracy. The average reconstruction errors with the standard
deviation calculated over 10 trials (each using different data subset for training) are shown in
Figure 2. It can be seen that although the two methods are comparable when over 400 training
samples are used, DM2 is more stable and outperforms DM1 when relatively small shape
sample is used for training. For the comparative evaluation, performance of the proposed
method is tested against three previous approaches. The experiment is design to test the
robustness of our approach when data is corrupted by noise. The measurements Y were
perturbed by Gaussian noise with varied level of noise. For each selected level of noise, the
experiments were repeated 10 times. The results in Figure 3(a) show our method provides
smaller reconstruction errors.

1The data was obtained from http://mocap.cs.cmu.edu.
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Figure 3: (a) Reconstruction error as function of the measurement noise for the cardboard
data. (b) The influence of the observations missing data on the reconstruction error.
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Figure 4: Reconstruction results for varying levels of missing data and 5 levels of noise for
the cardboard data. (a) Results using non-linear method with DM2; (b) Results using linear
method.

To simulate the missing observations, we randomly discard 10%, 20%, 30%, 40% and
50% of the 2D entries in Y . The results in Figure 3(b) are calculated by averaging over
10 trials. With the missing data ratio of up to 50% , the average (maximum) 3D and 2D
reconstruction errors were 0.1629 (0.1881) and 0.0032 (0.0053) respectively, where errors
were calculated as ‖Y−Y′‖/‖Y‖ , where Y′ is the reconstructed measurement matrix.

In real cases, missing data and measurement noise are distorting the observations in the
same time. The aim of the following experiment is to evaluate the methods’ performance in
such situations. We compare results of the 3D error obtained using the PCA based method
to fill the missing entries in the measurement and then apply DM2, with the results obtained
using the non-linear approach. Results plotted in Figure 4 show the reconstruction error as
function of the amount of the missing data for different level of noise in the observations.
As it can be seen that both methods are robust with respect to missing data, however, the
non-linear method provides smaller errors both in terms of means and standard deviations.

5.2 Qualitative evaluation

Motion capture data: Table 1 shows the 3D reconstruction error for different methods on
different sequences. For DM we present both initial error and final result produced by DM1
and DM2. The errors are chosen with the optimal number of basis n, with the optimal n
selected based on running the trials with n varying from 2 to 10. As shown in the table, DM1
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CSF KSFM IPCA DM
Initial DM1 DM2

Surprise 0.0396(3) 0.0381(4) 0.0829 0.3154 0.0352(10) 0.0208(10)
Talking 0.0573(3) 0.0498(4) 0.0986 0.9657 0.0350(10) 0.0280(10)

Cardboard 0.3237(3) 0.2753(2) 0.2445 0.2674 0.1064(10) 0.1114(10)
Cloth 0.2609(6) 0.1806(2) 0.1909 0.2967 0.0287(7) 0.0556(5)
Yoga 0.1467(7) 0.1474(7) 0.2626 0.2628 0.0768(10) 0.1197(10)

Table 1: Normalised mean 3D error (number of bases n) of reconstruction results using
different methods.

DM2

KSFM

Frame 1 Frame 65 Frame 130Frame 50 Frame 150

Frame 30 Frame 100

DM2 DM2KSFM KSFM

Figure 5: Reconstruction results on the yoga (upper) and cloth (bottom) sequences. Recon-
structed 3D shapes (blue circles), together with ground truth (red dots) are displayed.

and DM2 consistently outperform other methods, especially for the sequences with large
deformations. Even though the initial error is big, the proposed method is still able to provide
accurate reconstruction results. DM1 and DM2 are comparable, but DM2 uses much less
training data than DM1, e.g. for cardboard sequence, DM1 required a dense representation
of the manifold, for which 1000 shapes have been used for training, while DM2 only used
40 shapes for training. More results comparing DM1 against other approaches can be found
in [16].

In Figure 5, we visually compare the results of KSFM and DM2 against ground truth
shapes. We can observe that DM2 generally gives better results, especially for the cloth
sequence. This was to be expected since shapes can be better modelled in a non-linear
manifold.
Real data: The algorithms used in the motion capture experiments above were applied to
real data as shown in Figure 6. In the video, 81 features were tracked along 61 frames
showing approximately two periods of paper bending movement.

6 Conclusion
In this paper, a manifold based approach has been demonstrated to recover the shape and
motion of non-rigid objects from monocular image sequences. The advantage of the pro-
posed method is that the non-linear manifold is only learned from small number of samples
and the reconstructed shapes are clustered into several local linear subspaces. By combin-
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Frame 1 Frame 41
KSFM KSFMDM2 DM2

Figure 6: Selected 2D frames from the paper bending video sequence . Front and top views
of the corresponding 3D reconstructed results using the proposed method (DM2) and KSFM.

ing non-linear manifold technique and low-rank shape model, the method produces accurate
solutions to the shape recovery problem, and achieves better performance when compared
with linear based methods, especially for the shapes with large and complex deformations.
However the comparison of the proposed method with respect to the other methods may be
seen as unfair, as better reconstruction accuracy of of the proposed method comes at the cost
of required availability of a representative training dataset.

It should be noticed that selection of the training shapes has not been optimised leading
to some badly shaped triangles in the clustered reduced space. The reconstruction results are
affected if corresponding shapes are being clustered in such triangles. Future work will at-
tempt to address the problem by either refining the Delaunay mesh or introducing a criterion
for selection of the optimal training shapes. We are also investigating several extensions of
this work to more challenging cases, such as to deal with the outliers and real time imple-
mentation.
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