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Motivation This paper presents a method for recovering deformable
shape and motion from uncalibrated 2D video sequence in the presence
of missing data. Considering that the data dimensionality may not repre-
sent the true complexity of the problem, we suggest that the shapes can
be well-modelled in a low dimensional manifold. However, building a
dense representation of the manifold requires a large amount of training
data which is not feasible in many real applications [3]. The main contri-
bution of this paper is to propose a novel approach for estimating accurate
3D reconstructions using manifold learning technique, namely Diffusion
maps, from a relatively small number of training samples. The problem
is addressed by grouping shapes into evolving clusters, with the shapes
in each cluster represented in the linear subspace, estimated based on the
observations and the prior learned manifold.

Assuming that a set of image feature points have been tracked in the 2D
image sequence viewed by an orthographic camera, the problem consists
of shapes S = {Si,...Ss} and camera rotation R = {R,...,R}, re-
covery from 2D observations Y = {Y1 yee 7Yf}, According to the shape
basis assumption, shape S; can be represented as a linear combination of
n unknown but fixed basis shapes B;, S; = Y./, 6,;B;, while the shape
coefficients 6;; are adjustable over time. Therefore the measurement can
be arranged as:
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P represents a known orthographic camera projection matrix.
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The initial shapes and motion are calculated based on linear approach.
Shape embedding Having a shape S; not present in the training set X,
an embedding S;— (¥ (S;), -+, Pk (S:)) of this new shape is calculated
from the Nystrom extension [1]:

‘ilk(sl):z‘,xiex P(S;,Xj)(Pk(Xj)
where p(S,,X;) is from diffusion operator [2].
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Shape update Once the initial shapes have been embedded into a lower
dimensional space, finding their inverse mapping (the pre-image prob-
lem) can help to update shapes. Suppose we have an embedded point
b; € R", a Delaunay triangulation can be computed in n dimensional re-
duced space, enabling selection of n+ 1 nearest neighbours x,; of b;. Each
point b, can be represented as b, = ):;‘Ll 6,;x;;, where the coefficients

6= {6, 1,...,9,(n +1)} are the barycentric coordinates of b, and the in-

verse mapping can be formulated as,

Y b =Y 0Xy with Y e =1,0<6 <1

where training sample X;; is the pre-image of x;;.
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Shape clustering We stipulate that the points in the reduced space be-
long to the same Delaunay simplex (i.e. cluster), can be modelled by
the same linear subspace embedded in R, and therefore all correspond-
ing reconstructed shapes (represented by that cluster) can be approxi-
mated by a linear combination of the same set of unknown but fixed
basis shapes. Thus all the shapes in the cluster i can be represented as
S = 2?;11 G,IB}',Vt € T;, where a set of basis shapes B/ = {B’l "'BZH}
is spanning the tangent linear subspace representing all the shapes from
the cluster i.

The reconstructed shapes are often different from the training sam-
ples, therefore cannot be perfectly mapped into the manifold M. As the
result we relax the constraint for the basis shapes, only “encouraging”
them to be close to the basis shapes spanning the tangent subspace, in-
stead of being exactly the same. The additional constraint applied to the
i set of basis shapes is,
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Figure 1: Delaunay triangulations (blue line) in the reduced space; Em-
bedded initial shapes (left) and reconstructed shapes(right) (green dots)
and the actual used triangles (red line)
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Figure 2: Results for the cardboard data. Left: 3D error as function of the
number of training samples. Right: Varying levels of missing data and 5
levels of noise.
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Fig. 1 illustrates an example of how the initial shapes are redistributed in
the reduced space after algorithm has converged.

Non-linear refinement The parameters Oﬂ,Bf and R; are optimised si-
multaneously by minimising the 2D re-projection error with additional
constraints on basis shapes and rotation matrices. The cost function can
be written as,

n+1 2

E(R;,B},6,) =Y |Y.—P-R Y 6B +2Ap&j+Ar Y, &o (5)
teT; =1 teT;
where &, = HR,RtT - ]IH enforces orthonomality of all R,. Ag and A are
regularisation constants. A non-linear optimisation based on bundle ad-
justment using Levenberg-Marquardt algorithm was applied to minimize
this cost function.

Evaluation Fig.2(Left) shows the effect of the number of training shapes
on the reconstruction accuracy for [3] (DM1) and the proposed one (DM2).
The average reconstruction errors with the standard deviation calculated
over 10 trials, each using different data subset for training. In real cases,
missing data and measurement noise are distorting the observations in the
same time. Fig.2(Right) shows the relevant results.
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Figure 3: Selected 2D frames from paper bending video sequence. Front
and top views of the corresponding 3D reconstructed results.
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