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Abstract 

In this paper, we propose a simple and robust local descriptor, called the 
robust local binary pattern (RLBP). The local binary pattern (LBP) works 
very successfully in many domains, such as texture classification, human 
detection and face recognition. However, an issue of LBP is that it is not so 
robust to the noise present in the image. We improve the robustness of LBP 
by changing the coding bit of LBP. Experimental results on the Brodatz and 
UIUC texture databases show that RLBP impressively outperforms the other 
widely used descriptors (e.g., SIFT, Gabor, MR8 and LBP) and other 
variants of LBP (e.g., completed LBP), especially when we add noise in the 
images. In addition, experimental results on human face recognition also 
show a promising performance comparable to the best known results on the 
Face Recognition Grand Challenge (FRGC) face dataset. 

1 Introduction 
Recently, many sparse and dense descriptors (e.g., SIFT, Gabor, MR8 and LBP) have been 
proposed for different kinds of applications. There are several studies to evaluate their 
performance, e.g., [13, 14]. LBP [15] is perhaps the best performing dense descriptor and it 
has been widely used in various applications, such as texture classification, human 
detection and face recognition [18]. It has been proven to be highly discriminative and its 
key advantages, namely its invariance to monotonic gray level changes and computational 
efficiency, make it suitable for demanding image analysis tasks. 

However, one issue of LBP is that it is not so robust to the noise present in images 
when the gray-level changes resulting from the noise are not monotonic, even if the 
changes are not significant [2]. To this end, we propose a new descriptor based on LBP, 
i.e., robust local binary pattern (RLBP). The idea is to locate the possible bit in LBP 
pattern changed by the noise and then revise the changed bit of the LBP pattern. The idea 
is very simple, but it works very well. For example, the performance of LBP decreases 
significantly when we add white Gauss noise in the Brodatz texture dataset [1]. However, 
the performance of RLBP almost does not change. We also add noise in UIUC texture [7] 
and FRGC face datasets [17] to testify the performance of RLBP. 
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1.1 Related works 

Recently, many different image descriptors have been proposed. For example, Lowe 
introduced the sparse scale-invariant feature transform (SIFT) descriptor [11], which 
performs elegantly [13]. Several attempts to improve SIFT have been reported [3, 7, 10, 13, 
19]. 

A highly popular dense image descriptor is LBP [18]. Many variants of it have been 
proposed recently, achieving considerable success in various tasks. Ahonen et al. exploited 
the LBP for face recognition [18], and Tan and Triggs proposed local ternary patterns 
(LTP) [21]. Zhao and Pietikäinen introduced the spatiotemporal LBP [24]. Liao et al. 
proposed the dominant local binary pattern (DLBP) [8], and Guo et al. proposed a 
completed modeling of the local binary pattern (CLBP) operator [4]. 

The rest is organized as follows: in Section 2, we present the details of RLBP. In 
Sections 3 and 4, we carry out the experiments. Section 5 concludes the paper. 

2 RLBP for Image Representation 
In this section, we will first review the LBP briefly and then introduce the proposed RLBP. 

2.1 Local binary pattern 

The basic form of LBP is illustrated in Fig. 1 (a) and (b) [15]. Specifically, we use a local 
neighborhood around each pixel as input (see Fig. 1 (a)) and then threshold the 
neighborhood pixels at the value of the central pixel. The resulting binary-valued string is 
weighted as follows: 
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where the parameter P runs over the eight neighbors of the central pixel Ic. Ic and Ii are the 
gray-level values at c and i, and s(A) is 1 if A ≥ 0 and 0 otherwise. 

One extension of the original LBP is the uniform patterns: an LBP is ‘uniform’ if it 
contains at most two 0-1 or 1-0 transition when viewed it as a circular bit string (e.g., 
11110011 is a uniform pattern). The final texture feature employed in analysis is the 
histogram of the operator outputs (i.e., pattern labels) accumulated over a texture sample. 
In general, the histogram of uniform patterns provides better discrimination in comparison 
to the histogram of all individual patterns [15]. 
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Fig. 1. LBP. (a) A pixel and its eight neighbors; (b) Basic LBP. 

Let us consider the LBP in the case that P=8 and R=1, i.e., LBP(8,1), where parameter 
P controls the quantization of the angular space, and R determines the spatial resolution of 
the operator. Formally, given an image I, denote its histogram of LBP(8,1) to be H, which 
has 256 bins before mapping it to a uniform pattern. Let Hui be the uniform pattern 
histogram. We have the mapping function: 
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Hui=φ(H), (2) 

which computes the uniform pattern histogram Hui for H. 

Let iH  be the i-th bin of H (i = 0,…255) and ui
kH  be the k-th bin of Hui (k = 0,…58). 

Let |Hi| be the occurrence frequency of Hi. We have the detailed form of function φ(H): 
If the LBP pattern corresponding to iH is a uniform pattern, 

     ui
k iH H= , k=k+1 and i=i+1;  

        otherwise, 0 0
ui ui

iH H H= + , i=i+1. 
(3) 

2.2 Robust local binary pattern 

An example of how to compute RLBP from LBP is shown in Fig. 2. The neighbors of the 
pixel xc would give the LBP pattern string (11010011). However, the pixel value of x2=124 
here is of high probability of being noisy since it results in a (101) substring (see following 
for details). If we change the corresponding bit of x2 in LBP string from 0 to 1, the new 
LBP string of this pixel (11110011) would denote a local corner, which is a more 
meaningful pattern for the texture representation and classification.  

 
Fig. 2. Robust local binary pattern 

Let us consider the LBP in the case that P=8 and R=1, i.e., LBP(8,1). In general, any 
neighboring three-bit substring in an eight-bit LBP pattern string is one in the set 
Y={y1=(000), y2= (001), y3= (010), y4= (011), y5= (100), y6= (101), y7= (110), y8= (111)}. 
Following the idea of the example in Fig. 2, we assume that the cases of y3 and y6 are noisy 
and change them to a new sub-string: y’3= (000), and y’6= (111). 

Formally, given an image I, let its histogram of LBP(8,1) be H, which has 256 bins 
before mapping it to a uniform pattern. For each bin Hi of H (i = 0,…255), we search all of 
its neighboring three-bit substrings, and map its y3 or y6 to y’3 or y’6, respectively. We 
denote the mapping function as follows: 

RHs=Ψ(Hi), (4) 

where RH is the resulted histogram of RLBP, composed of uniform patterns, and RHs is 
the s-bin, s∈ {1,…58}. Let |RHs| be the occurrence frequency of RHs. The occurrence 
frequency of RHs is then changed to |RHs|+|Hi| after this mapping.  

Note that the mapping function Ψ(Hi) is not a one-to-one mapping. Specially, one bin 
Hi would map to more than one bin (for example, the LBP string 11010011 in Fig. 2 can be 
mapped to 11110011 or 11000011). Let Ti denote that the number of bins that Hi maps to 
those bins in RH by Eq. (4). Thus, Eq. (4) is revised as follows:  

{RHst|t=1,…, Ti }=Ψ(Hi), (5) 

and the new occurrence frequency of RHst is computed as  
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|RHst|=|RHst|+ 1

iT |Hi|, t=1,…, Ti. (6) 

In our case, we also use the uniform patterns of LBP as in [15]. For LBP(8,1), we map 
the 256 bins of LBP(8,1) to 59 bins, denoting it as LBPu2(8,1). The traditional lookup table 
[15], considering 256 bins and the uniform pattern model, maps all the non-uniform 
patterns to one “miscellaneous” bin, i.e., the collection bin 0

uiH  in Eq. (3). The occurrence 

frequencies of the non-uniform pattern bins increase when the noise in the image increases. 
Different from the method in [15], we re-consider the non-uniform patterns during the 
mapping from the original 256-bin histogram to uniform pattern histogram as in Eq. (6).  

Note that some resulting bins RHst by Eq. (5) might not be a uniform pattern. Assuming 
that there are Ti1 patterns in uniform (i.e., {RHst|t=1,…, Ti1 }) and Ti2= Ti- Ti1 patterns not 
in uniform (i.e., {RHst|t= Ti1+1,…, Ti }),  and we use RH0 to accumulate the frequency of 
non-uniform patterns. Thus, Eq. (6) is revised as follows: 

|RHst|=|RHst|+ 1

iT |Hi|, t=1,…, Ti1 

|RH0|=|RH0|+ 2i

i

T

T |Hi| 
(7) 

Combining the Eqs. (5) and (7), we map a non-uniform pattern to one/some uniform 
pattern(s) and non-uniform pattern(s). By this way, we re-consider the non-uniform pattern 
which might be resulted from a uniform pattern due to the noise. Note that the input of the 
mapping function Ψ(Hi) is non-uniform pattern, and for the uniform pattern we use the 
same rule as [15].  

One risk for this method is that it would map a natural non-uniform pattern to a 
uniform pattern. However, it would not change the discrimination of the LBPu2 histogram. 
It is because all the non-uniform patterns in the full LBP(8,1) pattern (256 bins) are 
mapped to the same bin (i.e., 0

uiH ) in LBPu2(8,1), and 0
uiH  is in general not discriminative 

for classification. In addition, the number of natural non-uniform patterns is limited [15]. 
The mapping function Ψ(Hi) in Eq. (5) is the same for all the images. The mapping 

table can be computed beforehand. Thus, the RLBP is also computationally efficient 
compared to the traditional LBP. 

2.3 Motivation and statistical evidence 

In this section, we will first discuss motivation for our method, and then show statistical 
evidence. In our case, we only map the two patterns, i.e., y3 and y6. Our motivation for 
RLBP is to develop a descriptor to be robust to point noise (e.g., Gaussian, salt & pepper 
or Rayleigh noise). According to the statistical results [15], the neighboring pixels in an 
image should be smooth (e.g., LBP=00000000) or disturbed by edges (e.g., 
LBP=00001111). If one pixel is a noise, the bit in LBP pattern might be changed, e.g, 
LBP=00001101, where the seventh bit is different from its two neighboring bits, i.e., we 
have a substring y6= (101).  

However, for other patterns, e.g., y2= (001), the middle bit takes the same bit value as 
one of its neighboring bits at least, which might describe an edge (e.g., LBP=00001111). 
In addition, we only mapped those which were non-uniform patterns. In [15], all the non-
uniform patterns are mapped to the same bin when building the histogram for LBP. By our 
method, we improve the discriminability of LBP. 

We will then show some statistical evidence. For the validation dataset, four different  
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     (a) (b)        (c) 

           (d) (e)      (f) 
Fig. 3. Illustration of the textures. (a) - (d) 
illustrates the textures. (e) is a patch 
cropped from (d) with ISO 100 and (f) is a 
patch cropped from (d) with ISO 6400. 

 
Fig. 4. The ratio of uniform patterns observed 
as a function of noise level for the four textures 
in Fig. 3 (a)- (d). For LBP(8,1). Y-axis is the 
average of each noise level; x-axis shows the 
different ISO, i.e., 1=ISO100, 2=ISO400, 
3=ISO1600, 4=ISO6400. 

views are captured with Nikon D90 DSLR mounted on a tripod. The noise levels were 
affected using different ISO boost settings. Using a low ISO level results in a lower noise 
image, while increasing the ISO level results in images with more noise. Each view was 
captured using four different ISO boost levels (ISO 100, ISO 400, ISO 1600 and ISO 
6400). Five images were captured for each ISO setting resulting in four views in four ISO 
levels. Thus, we got 80 images in total. We used uncompressed images with full resolution 
(4288×2848). Some examples are shown in Fig. 3. 

The goal is to test how noise affects the uniform patterns (u2) of LBP. The hypothesis is 
that when the noise level increases, the amount of uniform patterns decreases as more 
patterns are mapped to the collection bin. The idea of RLBP is to map noisy patterns into 
uniform patterns and the hypothesis is that RLBP will be less affected by the noise. 

Fig. 4 shows how the ratio of the uniform patterns in LBPu2(8,1) clearly decreases when 
the noise level increases. Here, the ratio of uniform patterns is the quotient by dividing the 
number of uniform patterns by the number of all LBP patterns of one image. Also it is 
obvious that the RLBP representation is less sensitive to noise. It is clear that the results 
support the hypothesis. In addition, from Fig. 4, we can find that after mapping the two 
patterns, i.e., y3 and y6, the ratio of uniform patterns in RLBP is close to 1. It means that 
these two patterns take up most of the patterns in LBPu2(8,1) which are changed from 
uniform patterns to non-uniform ones due to the noise. 

   
(a) 

Original 
log(1/SNR) 

0.02 0.03 0.05 0.07 0.1 0.2 

 
(b) 

Fig. 5. (a) Example images from Brodatz and UIUC texture datasets. (b) An example from 
Brodatz by adding white Gaussian noise. 
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Fig. 6. Performance comparison with existing methods over Brodatz textures, (a) the 
original textures, (b) white Gaussian noise. (c) Salt & Pepper noise and (d) Rayleigh noise.  
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Fig. 7. Performance comparison with existing methods over UIUC textures, (a) using the 
original textures, (b) using the textures added with white Gaussian noise. 

3 Application to Texture Classification 
In this section, we use RLBP for texture classification, which plays an important role in 
many applications, such as robot vision, content-based access to image databases and 
automatic tissue recognition in medical images [12, 15, 18]. 
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3.1 Dataset and set-ups 

Experiments are carried out on two different texture databases: Brodatz [1] and UIUC [7]. 
Example images are shown in Fig. 5. For Brodatz32 [16], it comprises 2,048 samples, with 
64 samples in each of the 32 texture categories [6, 16, 22]. UIUC has 25 classes with 
images under uncontrolled illumination, albedo variations, 3D shape, as well as a mixture 
of both. Note that we use different evaluation setups for the Brodatz and UIUC texture 
databases. Specifically, for the Brodatz textures we use half of the samples in each class for 
training and half for testing as in [6, 16, 22]. For UIUC, we use ten samples for training 
and the rest for testing as in [7]. We repeat these experiments ten times and report the 
average values. 

We use the RLBP histogram feature as a representation and build a system for texture 
classification. As the classifier we use the K-nearest neighbour method, which has been 
successfully utilized in classification. In our case, K=1. To compute the distance between 
two given images I1 and I2, we first obtain their RLBP histogram features H1 and H2. We 
then measure the similarity between H1 and H2 by the normalized histogram intersection. 

3.2 Experimental Results 

Experimental results on Brodatz textures are illustrated in Fig. 6. In Fig. 6 (a), we compare 
our method with others on the classification task of Brodatz textures: SIFT [11], MR8 [23], 
Jalba [6], Urbach [22], and Manjunath [12] (i.e., Gabor) and LBP [15] and its variants, i.e, 
CLBP [4], DLBP[8]. Note that the results of [6] and [22] from other methods are quoted 
directly from the original papers. Other methods are re-implemented by us following the 
ideas of these papers. In addition, LBP in the following parts is referred to LBPu2 for short. 

Results on Brodatz dataset 
From Fig. 6 (a), one can find that RLBP works in a very robust way in comparison to other 
methods. The performance of SIFT might suffer from the image size (64×64), by which 
the sparse points of interest are not enough for SIFT to perform well. 

Besides the performance comparison with other methods, we also carried out an 
experiment on the Brodatz dataset to compare the efficiency of RLBP with LBP and 
Gabor. The experiments are performed on a 3.10 GHz Intel Core i5-2400 processor using 
8GB RAM by executing C/C++ code. To extract the features for an image of this dataset, 
the average time consumptions of LBP and RLBP are 0.6 milliseconds, while that of Gabor 
is 197 milliseconds. Note that the mapping table for RLBP is computed beforehand.  

Results on Brodatz dataset with Noise 
We test the robustness of RLBP by additive noise and compare its performance with 
existing methods. In Fig. 5 (b), we show some examples from Brodatz textures by adding 
white Gaussian noise. From this figure, when the value of log(1/SNR), i.e., the logarithm of 
the inverse of the signal-to-noise ratio (SNR), increases, the image quality degrades 
significantly. Especially when log(1/SNR)=0.2, the image appearance changes 
significantly. 

As can be seen from Fig. 6 (b), we compare the performances of RLBP, LBP, CLBP, 
DLBP, SIFT, Gabor and MR8 on the Brodatz textures with added white Gaussian noise. 
Here, x axis is log(1/SNR). From this figure, one can see that the performance of LBP 
decreases significantly when the noise strength is larger than 5%. However, the 
performance of RLBP changes little even when the noise strength is larger than 20%. For 
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the poor performance of DLBP when we added white Gaussian noise, a possible reason is 
that the noise may change the pattern type of a dominant pattern in the noise-free case. 
Therefore, the noise may possibly reshape the dominant pattern histogram in some cases 
by assigning some of the dominant pattern's occurrence to other types of patterns.  

We also test the case by first applying a filtering and then applying LBP as shown in 
Fig. 6 (b). Here, we use three types of filters, i.e., Wiener, Gaussian and median filters. In 
Fig. 6 (c) (d), we compare the performances of RLBP with existing methods on the 
Brodatz textures with added salt & pepper noise and Rayleigh noise.  

Results on UIUC dataset  
As shown in Fig.7 (a), we compare the performance of RLBP and existing methods on 

the classification task of UIUC textures. Similarly, we also add white Gaussian noise on 
the UIUC textures as shown in Fig. 7(b). From this figure, one can find that RLBP gets 
very good results compared with other methods. 

4 Application to Face Recognition 
In this section, we use RLBP for human face recognition. Face recognition is an active 
research area because of both its scientific challenge and wide range of potential 
applications, such as human-computer interaction and biometric identity authentication. 
Numerous face recognition algorithms have been developed in the past two decades [25]. 

4.1 Dataset and setups 

The dataset Face Recognition Grand Challenge (FRGC) version 2.0 is designed to promote 
face recognition in general with emphasis on 3D and high resolution still imagery. 
Meanwhile, there are six experimental protocols in FRGC and Experiments 1, 2 and 4 are 
designed for still images. There are 222 subjects showing 12,776 still images in the 
training set. For the classifier, we use Fisher Discriminant Analysis (FDA) and take 
Experiment 1 for evaluations. The Experiment 1 measures performance on 16,028 frontal 
facial images. These images are taken under controlled illumination, and both target and 
query set have the same number of samples (i.e., 16,028). The performance is reported as 
Verification Rates (VR) at 0.1% False Acceptance Rate (FAR). In our case, we only 
consider the still images.  One example face from FRGC data set is shown in Fig.8. 

Original
log(1/SNR) 

0.02 0.03 0.05 0.07 0.1 0.2 

 
Fig. 8. An example from FRGC data set, with added white Gaussian noise. 

For the face recognition framework, we use the similar method as in [20], in which Su 
et al. got very good results on FRGC. Specifically, they combined both global and local 
discriminative features for face representation and recognition. For the global features, 
they performed the Fourier transform for whole face images. For the local features, they 
performed the Gabor wavelet transform and then extracted some spatially partitioned 
image patch features. Different from [20], we use a different local feature, i.e., RLBP, to 
replace Gabor and keep the rest set-ups the same. 
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4.2 Experimental Results 

The resulting final strong classifier combining the global and local FDA is tested on the 
FRGC Experiment 1. The experimental results are shown in Fig. 9 (a). Herein, we also 
compare the performance of the resulting classifier (we call it “RLBP”, and the same for 
“LBP” and “CLBP”) with some existing methods. Here, the results of Hwang [5], Liu [9] 
and Su [20] are quoted directly from the original papers. The results of LBP and CLBP are 
implemented by us. From this figure, one can find that RLBP gets the best results over this 
dataset. In addition, LBP, CLBP and Su [20] (i.e., Gabor) also achieve very good results. 

Likewise, we also test the FRGC dataset set by adding white Gaussian noise. Some 
examples are shown in Fig. 8. The results of face recognition are plotted in Fig. 9 (b). One 
can find that RLBP works much better than the others, especially for the high level of noise 
images. 

5 Conclusions 
In this paper, we proposed a robust version of LBP (i.e., RLBP) by changing the coding of 
bits of LBP, which could otherwise be changed by noise. The experimental results are very 
promising although the idea is simple. Specifically, the experimental results over Brodatz 
texture dataset and the noisy Brodatz textures show perfect results. For example, RLBP 
achieves the accuracy of 98.9% for the dataset without noise and 98.6% with high levels of 
noise, while LBP gets the accuracy of 91.4% for the dataset without noise and 23.1% with 
high levels of noise. Experimental results on the UIUC texture database also show that 
RLBP impressively outperforms LBP. In addition, experimental results on FRGC face 
recognition also show a promising performance comparable to the best known results and 
reasonably good results for the dataset with added white Gaussian noise. For example, 
when log(1/SNR) =0.04, RLBP achieves the accuracy of 70% compared to 63% of Gabor, 
48% of CLBP and 44% of LBP. 

An interesting future work is to develop a multiscale RLBP because for the LBP when 
P=16 and R=2, and P=24 and R=3, the percentages of the uniform patterns are statistically 
about 66.9% and 54%, respectively, while it is 87% when P=8 and R=1. Another future 
work is to employ RLBP for depth images captured, e.g. by Kinect which tend to contain 
lots of noise. 
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Fig. 9. Performance comparison with existing methods over FRGC face dataset, (a) using 
the original face samples, (b) using the samples added white Gaussian noise. 
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