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From the early HMAX model to Spatial Pyramid Matching [2, 4], spatial
pooling has played an important role in visual recognition pipelines. By
aggregating local statistics, it equips the recognition architectures with a
certain degree of robustness to translation and deformation yet preserving
spatial information. Despite of its predominance in current recognition
systems, we have seen little progress to fully adapt the pooling strategy to
the task at hand, and this critical decision is most prominently based on
hand-crafted layouts.

We propose in this paper a flexible parameterization that allows for
a richer set of possible pooling regions and show results on classifica-
tion tasks using two different pipelines [1, 3]. The higher-level pooling
representation is learned jointly with the classifier to support the recog-
nition task. In order to deal with the increased flexibility of the model,
we investigate different regularizers and efficient learning schemes. In
particular, we propose a smoothness regularizer that yields the strongest
performance improvements in our experiments.

The simplest form of the spatial pooling is computing histogram over
the whole image. This can be expressed as L(U) := ):1}4: 1 u4j, where

uj € RX is an encoded patch extracted from the image (out of M such
codes) and an index j refers to the spatial location that the code originates
from!. Another popular pooling scheme that has been proven success-
ful [5] is max-pooling: M(U) := rnaxﬂ/’: L u;j. Since the pooling approach
looses spatial information of the codes, Lazebnik et al. [2] proposed to
first divide the image into subregions, and afterwards to create pooled fea-
tures by concatenating histograms computed over each subregion. There
are two problems with such an approach: first, the division is largely ar-
bitrary and in particular independent of the data; second, discretization
artifacts occur as spatially nearby codes can belong to two different re-
gions as the "hard’ division is made.

In our paper we address both problems by using a parameterized ver-
sion of the pooling operator

0, (U) :=pL;(wjou,) 1)

where ao b is the element-wise multiplication, and p € {max,}} is a
pooling function. Moreover, we have investigated a few regularization
terms on the pooling weights showing that smooth pooling regions are
crucial.

Consider a sampling scheme and an encoding method producing M
codes each K dimensional. Every coordinate of the code is an input layer
for the multilayer perceptron. Then we connect every j-th input unit at

the layer k to the /-th pooling unit a]l‘ via the relation wg‘ju’; . Since the

receptive field of the pooling unit af‘ consists of all codes at the layer
k, we have a;‘ = Z{}’I: 1w;‘julj‘- or af = max’}”’z 1wf‘julj‘-. Next, we connect
all pooling units with the classifier allowing the information to circulate
between the pooling layers and the classifier (Fig. 1). The latter has an
access to the class membership and can use this information back to the
pooling stage to shape better pooling regions. For the training purpose we
have derived the backpropagation rules used for the weights’ update.

To make the whole approach more scalable towards bigger dictionar-
ies we introduce two approximations. The first one, called pre-pooling,
uses standard pooling scheme to aggregate the codes over small neigh-
bourhood before our joint training of the pooling regions together with the
classifier’s parameters is applied. The second approximation (batches) di-
vides a K dimensional code into % batches, each D dimensional. The lat-
ter enables embarrassingly parallel training of the model with sizable dic-
tionaries. Our implementation of the proposed method is publicly avail-
ableat http://www.d2.mpi-inf.mpg.de/datasets.

We have evaluated our method on two classification datasets CIFAR-
10 and CIFAR-100 following Coates and Ng [1] pipeline, and UIUC
sports events following Li-Jia et al. [3].

!That is j = (x,y) where x and y refer to the spatial location of the center of the extracted
patch.
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Figure 1: Sketch of our architecture. We encode the patches extracted
from the images using popular encoding method. Next, we couple ev-
ery position of such encoded patches with the classifier via the pooling
weights. Our method learns both the pooling weights and classifier’s pa-
rameters at the same time by using the backpropagation rule.

Figures 2(a) and 2(b) show the classification accuracy of our model
against the baseline [1] on CIFAR-10. Our method outperforms the ap-
proach of Coates by 10% for dictionary size 16 (our method achieves the
accuracy 57.07%, whereas the baseline only 46.93%). For bigger dictio-
naries (1600) with an accuracy for the batched model of 79.6% we out-
perform the Coates baseline by 1.7%. On CIFAR-100 our model achieves
56.29% outperforming the baseline by 4.63%. Lastly, we investigate
events recognition on the UIUC Sports database based on object bank
features [3]. Our learnable pooling strategy achieves accuracy 79.4%,
about 3.1% higher then the hand-crafted scheme used in Li-Jia et al. [3].
Our experiments show the importance of the optimized pooling strategy.
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Figure 2: Figure 2(a) shows accuracy of the classification with respect to
the number of dictionary elements on smaller dictionaries. Figure 2(b)
shows the accuracy of the classification for bigger dictionaries when our
approximation is used (batches, and the redundant batches).

[1] A. Coates and A. Y. Ng. The importance of encoding versus training
with sparse coding and vector quantization. In ICML, 2011.

[2] S.Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spa-

tial pyramid matching for recognizing natural scene categories. In

CVPR, 2006.

L. Li-Jia, S. Hao, E. P. Xing, and L. Fei-Fei. Object bank: A high-
level image representation for scene classification and semantic fea-
ture sparsification. In NIPS, 2010.

M. Riesenhuber and T. Poggio. Hierarchical models of object recog-
nition in cortex. Nature Neuroscience, 2009.

(3]

(4]

[5] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid match-

ing using sparse coding for image classification. In CVPR, 2009.



