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Abstract

Computational complexity of the Kalman filter grows at least quadratically with the
number of dimensions in the filter. This is a particular problem for applications like
monocular simultaneous localization and mapping (SLAM) where it is not possible to
run a single filter on a large map with many thousands of landmarks.

This paper presents a method for dramatically reducing the computational complexity
of the Kalman filters by reducing the dimensionality as information is acquired. We prove
the validity of our method by applying it to monocular SLAM, where there is a large
number of dimensions in the filter that are not subject to process noise (the landmark
locations). This has the effect of reducing the cost of running a filter or allowing a single
filter to process a much larger set of landmarks.

Our approach also has a role to play within modern efficient sparse matrix approaches
to SLAM where local information is coalesced into keyframes using Kalman filters. It
also has general applicability to filtered measurement of static quantities where there are
large numbers of dimensions that are not subject to process noise.

1 Introduction

A simultaneous localization and mapping (SLAM) system continuously explores the envi-
ronment to causally estimate the ego-motion of a robot and to map the environment. Many
successful SLAM algorithms represent the stochastic nature of the robot motion and the
measurement models, together with noisy sensor data in a probabilistic manner, tracking the
joint posterior over the vehicle pose and the map.

The filtering approach for SLAM, maintains only the current camera pose with all land-
marks of interest as the state [7][1][12][3]. This representation marginalizes previous camera
poses, which intern connecting all state elements with each other making the covariance ma-
trix dense, leading to a fully connected graph. With new observations the filter complexity
grows at least quadratically, quickly making the problem intractable. This quadratic growth
can be handled by dividing the whole problem into small tractable maps while separately
maintaining the global consistency [9]. Developments like parallel tracking and mapping
(PTAM) [15] and dense tracking and mapping (DTAM) [16] take this further by noticing the
possibility of working with an active set of landmarks by separating tracking from mapping.
In these systems the tracker works with a local set of landmarks while the map maintains
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global consistency through bundle adjustment. Full bundle adjustment in PTAM adjusts the
pose with respect to all key frames. It exploits the sparseness inherent in the structure-from-
motion problem to reduce the complexity. Without maintaining all landmark descriptors in
this manner one could even use a more efficient sparse matrix system [19] [20][8],[13],[14]
as the back end to build a globally consistent map. As efficient as sparse matrix methods are,
they still have limitations and aren’t used to process all frames of video as this would gen-
erate much denser graphs with high connectivity which would overwhelm the approaches.
Hence they are restricted to using sparsely sampled keyframes.

On the other hand coalescing observations into independent local keyframes by building
a graph of local nodes, and optimizing the resulting graph [9] effectively overcomes the
problem with keyframes in order to maximize the amount of information available. Because
the information is acquired locally, the problem is nearly linear and so a Kalman filter was
used to combine the information from multiple frames to give rich keyframes that know
something about the inverse depth of landmarks as well as their image location. Hence the
Kalman filter still has a role to play.

In this paper we present a method to reduce the dimensionality of the extended Kalman
filter (EKF) for SLAM by identifying dominant modes of the filter. The method proposed can
be used in general to reduce the dimensionality of the EKF irrespectively of its application,
without being limited to SLAM. We are particularly interested in reducing the dimension-
ality of each node of the SLAM system mentioned in the previous paragraph [9], as this
graph optimization problem is nearly linear with the number of nodes and as it combines the
information from multiple frames to give richer key frames. The most complex operation
in such system is the Kalman filtering within each node, which imposes an upper limit on
the maximum number of landmarks each node can handle. Our approach can reduce the
dimensionality of Kalman filters used in each node, increasing the number of features a node
can handle leading to a more accurate estimation [5]. As we suggest in the discussion such
a dimensionality reduced graph even can be used in a multi-camera setup more efficiently
than a key frame based sparse matrix method.

Here we consider the particular class of Kalman filters where the process noise is zero
for a large number of dimensions. To handle large fixed sized data sets those which change
dynamically, a reduced Kalman filter [11] is being used in weather forecasting. Localization
and mapping differs from this, as the state vector size grows with time. Also in SLAM there
is a large number of dimensions with zero process noise. If the process noise is zero, the fil-
ter’s n dimensional state vector can be regarded as a point in a nD space, with a hyper ellipse
representing its uncertainty, given by the covariance matrix. After several observations, the
uncertainty in some directions in this space will reduce, making further information along
the same directions obsolete. This implies that information has to be fused only along other
directions where enough evidence isn’t yet available. In other words, observations contain
useful information only along directions we are lot uncertain about. Using these principal
modes we reduce the dimensionality of the EKF and maintain a reduced state It should be
noted that, our method is fundamentally different from sub-mapping approaches as we are
removing only less uncertain directions of the filter, indirectly maintaining all features of the
filter in contrast to removing inactive landmarks done in sub-mapping.

We re-parameterize the filter in terms of uncertainty and work with a reduced number
of uncertain dimensions, maintaining a covariance matrix only in this reduced space (see
Section 3). This re-parameterization takes place repeatedly whenever the filter has enough
information about an degree of freedom (it has a sufficiently small singular value) that it can
freeze that dimension and remove it from the filter (see Section 2.2). This process frees up


Citation
Citation
{Thrun, Liu, Koller, Ng, Ghahramani, and Durrant-Whyte} 2004

Citation
Citation
{Walter, Eustice, and Leonard} 2007

Citation
Citation
{Dellaert and Kaess} 2006

Citation
Citation
{Kaess, Ranganathan, and Dellaert} 2008

Citation
Citation
{Kaess, Johannsson, Roberts, Ila, Leonard, and Dellaert} 2012

Citation
Citation
{Eade and Drummond} 2007

Citation
Citation
{Eade and Drummond} 2007

Citation
Citation
{Clemente, Davison, Reid, Neira, and Tard{ó}s} 2007

Citation
Citation
{Farrell and Ioannou} 2001


GAMAGE, DRUMMOND: REDUCED DIMENSIONALITY EXTENDED KALMAN FILTER 3

computational capability which in turn we can use by adding more state variables (corre-
sponding to the locations of additional landmarks) to the filter (see section 2.1). EKF filters
for SLAM problems also typically represent the camera pose (and possibly velocity) in the
filter. These variable are subject to process noise and hence are not suitable for dimension
reduction because the process noise introduces uncertainty in those variables. In the section
3.1, we also show how these variables can be handled in our reduced dimensional frame-
work. The section 4 gives a complexity analysis of the system and the section 5 provides
experimental results. Then we conclude (see section 6) by explaining how our method will
be used for multiple camera SLAM.

2 Reduced Dimensionality Kalman Filter

If the filter starts at time ¢ = 7y with an unknown state and continues gathering information
until 7 = #;, the mean state of the filter, t;, can be frozen and future changes to the mean
can be represented as offsets. This observation enables us to decompose the covariance
matrix into certain and uncertain dimensions through singular value decomposition. Let the
covariance of the EKF be ¥, at time ¢ = #;. Then:

X, =UDU" (1

where U is the set of singular vectors of X; and D is the diagonal matrix of singular values.
The singular vectors represent de-correlated uncertainty directions with variances propor-
tional to their singular values. We partition D into D; the significant (large) set and D; the
insignificant (small) set. U is also partitioned into U vectors corresponding to D; and U;
vectors corresponding to D;. With this ¥, can now be written in block form:

Ds| 0 ur
m=lu v 5o o @

So the original covariance matrix becomes:
¥, =UD,U] + UD;UT 3)

As the second term of the above expression is comparatively small the column space of Uy
can be used as the reduced space ignoring small singular vectors. Let the significant vectors
U; extracted at t =t be Uy, and x; be the reduced state which is Gaussian distributed in the
reduced space with a mean p at t(>11). The reduced mean p/ relates to the original state
mean L, as:

“t = utl + Ustl ut/ (4)

This new state x, represents the variations of the original state around the point i, along
the directions of the column space of Uy,. Initially we start with y, being a zero vector,
indicating our knowledge about uncertainty is zero along corresponding singular vectors in
Uy, . Subsequent observations can be projected onto the derived reduced space to gather
information about the new state x;. The projected covariance matrix X, is obtained as:

%, =Ugy

sty

(X, —UDU! ) Uy, Q)
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The dimensionality of x, can be kept quite small, compared to the original state x,. For
all time steps #(> 11 ), information can be collected to update x; by changing its mean and the
covariance. This makes the reduced state time dependent. To obtain the prediction equation
in the reduced space, the linearized EKF states at time steps ¢ and t — 1 can be decomposed
according to the equation 4. As we are assuming zeros process noise, the process model
becomes the identity. Substituting the decomposed states into the process equation yields:

Uy +Ug, I»L;/ = (.Utl + Uy, #;_1) (6)

making the predicted state same as the previous state:

Wo=p )

Similarly, if the measurement is z; with the model Jacobian H, and measurement noise
vy, update equation, after substitution becomes:

% = H; (.Utl + Us .U;/) + Vv 3
which can be modified as:
Z — Hlly, = HUg, [t + v, 9

Here z; — H;1i;, becomes the modified observation and H,Uy, the projected Jacobian. The
dimensionality reduction described so far works only when the state is static. In a SLAM
setup, the camera pose keeps changing requiring a slightly different approach.

2.1 Adding New Landmarks

The computational savings achieved by reducing the dimensionality of the filter can be spent
by admitting more variables into the filter to be measured (thus increasing its dimensionality
again). A new variable /, can be directly added to the reduced state to obtain an augmented
state. This requires increasing the size of y; by one and adding a row and a column to Uy
and ;. The augmented state estimate fI/ and set of reduced vector space Ustl now become:

A / , Usy, O
= (‘?) Us = < 0 1> (10

!/
£ - <% 2) (11

where o is the initializing uncertainty of the new variable. It has to be noted that this aug-
mentation increases the dimensionality of the original space as well by the same number of
dimensions. So the froze mean y, has to be augmented with zeros to get a modified mean
{1;,. The relationship between the state estimate in the original space and the reduced space

becomes:
~ U U, Us 0 ,u/
It ( l”) ( 0tl> < Otl I> < ;It> (12)

Here we have used the “hat” to denote augmented vectors and matrices. For clarity we can
simply drop off the “hat” and use these variables to replace their un-augmented counterparts.

with the covariance:
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2.2 Iterative State Reduction

With continuous augmentations the reduced state x;d i also will start growing. To keep the
dimensionality of x;{‘k manageable, we decompose it continuously by distributing newly
learned knowledge over the froze mean L, and select a new reduced basis. Let us decom-
pose X; as shown in equation 23 at a time step # = #,(> ) and denote the new basis by Uy,
Let x; be the new state, Gaussian distributed with a mean y,". Thus y/ for any 7(> 1,,):

B =ty + Uy, b (13)
By substituting this into the equation 22 we can have:

;= Uy, + Usy (1, + Uy, 1" (14)

Above equation can be simplified as:
e = .ut1 +Ust1 ,ut/,, +Ust1 U;tn.u-t// (15)

The reduction in equation 15, distributes the information learnt up to #, over l; to get an
updated mean ;, such that:

Wi, = My, + Uy, ,ut/” (16)

With this the original reduced basis gets rotated towards the new basis to yield a new reduced
basis Uy, as:
Ustn = Ust] U;t,, (17)

This distribution can be done on frame to frame basis after each update, which makes the
reduced basis Uy, and the freeze mean [, time dependent.

In practice the significant set of vectors will become less than 20, as all other singular
values are very small or zero. Irrespective of the size of the original state, this makes it possi-
ble to keep the reduced space dimensionality limited to a some number around 15 excluding
the camera state.

3 Dimensionality Reduction in SLAM

Camera state and new features have to be handled separately when reducing the dimension-
ality in SLAM. A state vector x, composed of the camera and all the map features can be
written as:

T
X= (X Y1V (18)

where a scene 3D point i is defined by the dimension 6 state vector y; and the camera state

by x..

3.1 Reduction With the Camera

To model the desired variation while retaining the ability of doing standard operations on
the camera, here we perform reduction only upon landmark states. As the first step, land-
marks observed up to time ¢ = #; are decomposed, keeping the camera state intact by directly
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transferring it into the reduced state. Transfer stacks the camera on top of the reduced state,
which initially represented only the variation of landmarks.

Let us represent the state at time #;, which is composed of camera parameters Xey, and
the landmarks y,, as a Gaussian:

o = (” ) £, = ( » Z"’l”l) (19)

tu)’tl Z}‘tl €ty E}'tl
For dimensionality reduction, first the covariance matrix of landmarks Zy,l , can be decom-
posed according to the equation 3 and then significant dimensions Usy,, can be extracted as
the reduced space. As described earlier we fix the current landmarks state estimate Hy,, - In
addition to the steps described in the previous section, to directly transfer the camera, x/ .

¥
into the reduced space we have to extend its dimensions. So the reduced vector space Uy,

has to be extended by adding a set of orthogonal axes. Let the augmented reduced state to
be x§1 and the vector space to be Uy, , then:

! .uctl - I 0

The fixed point also has to be augmented with a set of zeros as we are transferring camera
parameters into the reduced space. The modified fixed point then becomes:

0
ey = (l'LM]> 21

The original state x; relates to the reduced state at ¢ > ¢1 through:

0 I 0 Ue
= + ! 22
Hr (‘uyn ) (O Usyn > (“}2) 22

The covariance in the reduced space can be easily obtained by projecting the original covari-
ance onto the reduced space Ug,

0 0
T w
Z;I = Ustl (Pk - (0 Uiniv U1T>> Ustl (23)

Camera dynamics can be incorporated by working on this space where we have augmented
the full camera state instead of its variations.

3.2 Prediction in the Reduced Space

When landmarks are static, the prediction involves estimating the camera and its covariance
with cross-covariance [4]. As we transfer the camera state directly in to the reduced state x;,
camera parameters can be predicted in the usual manner while keeping x;,t unchanged to get
the predicted state x;‘(til). The covariance block in the reduce covariance ¥] corresponding

to the camera state has to be added with process noise to get the predicted covariance Z;l (-1
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3.3 Measurements in the Reduced Space

State update is done by projecting the measurement model onto the reduced space. Measure-
ment model Jacobian H,, can be projected onto reduced space by a right multiplication. For
clarity if we drop the subscript ¢ and denote the Jacobian as H:

H; = HUy, (24)
The innovation covariance then can be written as:
Sy =H, 1 H +1 (25)
Reduced Kalman gain becomes:
K, = x;KH)HST s (26)
If the predicted measurement is /, the reduced state can be updated as:

Xelt = Xe|e—1 +Ks(z—h) (27)

4 Complexity Analysis

When all landmarks are static, prediction of a SLAM system simply becomes predicting
camera parameters according to a dynamic model. As we directly transferred the camera
state into the reduced space, the prediction complexity remains the same. The covariance of
the camera has to be added with process noise covariance, which has the same dimensionality
as well. The covariance of landmarks stays intact as landmarks are static. The matrix block
that represents the cross-covariance between landmarks and the camera state need to get
multiplied by the camera Jacobian. Let the dimensionality of the camera and the set of static
landmarks to be n. and n; respectively. Let n; be the dimensionality of the reduced space. In
the reduced space the complexity of this multiplication becomes O(n2n;) compared to the
O(n2n;) complexity in the original space.

Updating the state requires, inverting the innovation covariance of the filter. Let ny, and
np be the dimensionality of full states including the camera, in the original space and in the
reduced space respectively. The complexity of updating with a single landmark becomes
O(n?) in the original space. To obtain the Kalman gain, the innovation covariance has to
be inverted. The complexity of inverting a n dimensional matrix is O(n®). But, with the
sequential innovation Kalman filter formulation [10], if the number of current measurements
are limited to some number 7, which is smaller than the state dimensionality, the overall
complexity reduces to O(n,,n?). In a SLAM system, the number of observable feature 7,, at
a given time is smaller than the total number of landmarks. This reduces the complexity of
the inversion step from O(n3) to O(n,,n*). When information is projected onto the reduced
space, that information get distributed over all reduced states making a sequential approach
impossible. The complexity has to remain cubic in the reduced space. But dimensionality of
the reduces space is extremely small compared to the original space, where the complexity
is O(n%). Most importantly, the proposed method keeps np around 20 irrespectively of the
original state dimensionality ny.
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S Experimental Results

In order to prove the validity and the accuracy of the method proposed in this paper, first
we used synthetically generated data. In the experimental setup we generated a set of 3D
landmarks along with a synthetic camera sequence. All landmarks were inverse depth coded.
At each time step ¢, we projected those 3D landmarks onto the corresponding camera plane
C:. Each projected feature was added with random Gaussian noise with a unit pixel standard
deviation. To make the comparison a fair one, we used the same set of generated noisy data
points to evaluate the accuracy of both scenarios. Those projected noisy feature points with
their data associations in the previous image, were used to estimate camera parameters in a
EKEF setup. To evaluate the reduced dimensional EKF, we shifted from the standard filter to
the reduced filter after learning the environment for some time. After each estimation step,
inverse depth was extracted and normalized by the mean inverse depth to remove the scaling
ambiguity. Synthetic ground truth data was also normalized in a similar manner.

When calculating the average inverse depth from estimated landmarks, to get a meaning-
ful average depth, selected features need to be sufficiently certain. In other words, if there are
newly initialized landmarks with highly uncertain depth estimates the average will become
erroneous. If the estimated depth for a landmark is p such that p > 0 with a covariance X,
to avoid such situations, we set the selection criteria of the landmark to be:

p—\/T, >0 (28)

In our experiment we took the difference between the estimated inverse depth p, and the
ground truth p, for each selected landmark after the normalization. Then we divided this
difference by the inverse depth covariance of the estimated landmark in order to give a lower
weight to landmarks with a higher uncertainty. To remove the error induced by the scale
of the covariance (due to multiplication), result has to be multiplied by the average inverse
depth again. Let . and u, be the averages for estimated and ground truth inverse depths
respectively. If n is the number of landmarks, the final RMS error for each frame can be

obtained as:
2
Pe Pg) He | .
E = —— —— | +n (29)
RS Z[(ue K \/zp]

RMS error of landmark estimations. RMS error of landmark estimations (data set 2)

s —— RDEKF,

RMS error
RMS error

] ED 20 2 o 60

0 E 140 0 T 200
Frame number

& 00 )
Frame number

(a) Dataset 1 (b) Dataset 2

Figure 1: RMS error of landmark estimations with conventional EKF and proposed reduced
dimensionality EKF
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Graphs in figure 1 show the RMS error of estimated inverse depth values against the
frame number. The vertical line indicates the instance we started reducing the dimensional-
ity of the system. Until environment is learnt sufficiently for reduction, we have to rely on
the standard EKF. The dotted lined graph shows the error of the EKF based landmark esti-
mation and the full lined graph shows the error of the reduced dimensional EKF (RDEKF)
based landmark estimation. The graphs clearly indicate that the proposed RDEKF could
yield similar or better results compared to the standard EKF. Other than the dimensionality
reduction, selecting dominant modes bundles the movement of individual landmarks along
the global trend of the system. The error reduction can be attributed to this out-lier tolerance
we get through dimensionality reduction.

10’ Time vs the number of landmarks
14 : ;

s start dimensionality reduction =
________
& /

e

E o8k r’ -

r o
—

4

0 I I I I I I I |
300 400 500 600 700 ann 900 1000 1100 1200
Number of features

Figure 2: Time complexity of the update step for a real data sequence

The figure 2 shows the time taken by the update step of the Kalman filter for real data.
Here we have considered only the update step as predictions are almost the same for both
methods. In the figure, the values has been slightly median filtered to remove sudden spikes
that occur in measuring the time complexity. The graph clearly shows that, we can keep the
execution time of the RDEKF almost linear.

6 Discussion and Future Work

In this paper we introduced a dimensionality reduction technique to handle the complexity
growth of the extended Kalman filter. Though the Kalman filter is not the state of the art any
more with current sparse matrix methods, we believe still the Kalman filter has a considerable
potential especially for collaborative SLAM.

The PTAM idea later has been extended to accommodate multiple trackers to map the
environment through a sub-mapping approach [2]. It would be much efficient if it is possible
to replace the back end of such a system with a new sparse matrix method. But such a back-
end will impose some other limitations in a multi camera setup. When multiple cameras are
updating the same sub-map, it is impossible to do a bundle adjustment within that sub-map in
an incremental fashion, making methods like incremental smoothing and mapping (ISAM)
[14] less appropriate as they cannot have multiple roots. The possible solution; merging
maps together requires marginalizing all camera poses from each map to build a secondary
map only with landmarks before fusing them together [6]. This marginalization will become
tedious when the graphs are large.
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We introduced our method aiming the representation of SLAM as a graph of coalesced
observations [9]. Such a graph can be easily extended to accommodate multiple cam-
eras, each coalescing its information into a selected node, where global consistency can be
maitained separately. This method represents observations relative to an active node which
has some similarities with relative bundle adjustment [17] where landmarks are represented
relative to their observed coordinate system. But as camera is marginalized from each node
when coalescing observations, multiple camera information can be fused independently into
each node. Compared to existing methods which requires camera marginalization from a
large bundle adjusted graph [6], fusing information into a node will be much more efficient.
But fusing new information should be done only along uncertain directions. Our dimension-
ality reduction technique can be used to identify such directions, which intern increases the
number of landmarks that can be handled by each node for improved accuracy [18].
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