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Computational complexity of the Kalman filter grows at least quadrat-
ically with the number of dimensions in the filter. This is a particular prob-
lem for applications like monocular simultaneous localization and map-
ping (SLAM) where it is not possible to run a single filter on a large map
with many thousands of landmarks. The filtering approach for SLAM,
maintains only the current camera pose with all landmarks of interest as
the state [2].

This paper presents a method for reducing the computational com-
plexity of the Kalman filters by reducing the dimensionality as informa-
tion is acquired. The method reduces the dimensionality of the extended
Kalman filter (EKF) for SLAM by identifying dominant modes of the fil-
ter. This can be used in general to reduce the dimensionality of the EKF
irrespectively of its application, without being limited to SLAM.

For a filter with zero process noise, the mean of this distribution can
be represented as a point in a nD space with its uncertainty as a hyper
ellipse. Further information will reduce this uncertainty along some di-
rections. After some time uncertainty along many directions becomes
comparatively small, making further information redundant. So the co-
variance matrix can be decompose into certain and uncertain dimensions.

Σt1 =UDUT (1)

where U is the set of singular vectors of Σt1 and D is the diagonal matrix of
singular values. The singular vectors represent de-correlated uncertainty
directions with variances proportional to their singular values. We parti-
tion D into Ds the significant (large) set and Di the insignificant (small)
set. U is also partitioned into Us vectors corresponding to Ds and Ui vec-
tors corresponding to Di. With this Σt can now be written in block form:

Σt1 =
[

Us Ui
][ Ds 0

0 Di

][
UT

s
UT

i

]
(2)

So the original covariance matrix becomes:

Σt1 =UsDsUT
s +UiDiUT

i (3)

As the second term of the above expression is comparatively small the
column space of Us can be used as the reduced space ignoring small sin-
gular vectors. Let the significant vectors Us extracted at t = t1 be Ust1 and
x′t be the reduced state which is Gaussian distributed in the reduced space
with a mean µ ′t at t(≥ t1). The reduced mean µ ′t relates to the original
state mean µt as:

µt = µt1 +Ust1 µ
′
t (4)

This new state x′t represents the variations of the original state around the
point µt1 along the directions of the column space of Ust1 . Initially we
start with µt1 being a zero vector, indicating our knowledge about uncer-
tainty is zero along corresponding singular vectors in Ust1 . Subsequent
observations can be projected onto the derived reduced space to gather
information about the new state x′t . The projected covariance matrix Σt1 is
obtained as:

Σ
′
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i

)
Ust1 (5)

The dimensionality of x′t can be kept quite small, compared to the
original state xt . For all time steps t(≥ t1), information can be collected
to update x′t by changing its mean and the covariance. This makes the
reduced state time dependent. To obtain the prediction equation in the
reduced space, the linearized EKF states at time steps t and t − 1 can
be decomposed according to the equation 4. As we are assuming zeros
process noise, the process model becomes the identity. Substituting the
decomposed states into the process equation yields:

µt1 +Ust1 µ
′
t =

(
µt1 +Ust1 µ

′
t−1

)
(6)

making the predicted state same as the previous state:

µ
′
t = µ

′
t−1 (7)

Similarly, if the measurement is zt with the model Jacobian Ht and
measurement noise vt , update equation, after substitution becomes:

zt = Ht
(
µt1 +Ust1 µ

′
t
)
+ vt (8)

which can be modified as:

zt −Ht µt1 = HtUst1 µ
′
t + vt (9)

Here zt −Ht µt1 becomes the modified observation and HtUst1 the pro-
jected Jacobian. The dimensionality reduction described so far works
only when the state is static. In a SLAM setup, the camera pose keeps
changing requiring a slightly different approach.

The computational savings achieved by reducing the dimensionality
of the filter can be spent by admitting more variables into the filter to be
measured (thus increasing its dimensionality again). A new variable l,
can be directly added to the reduced state to obtain an augmented state. It
has to be noted that this augmentation increases the dimensionality of the
original space as well by the same number of dimensions. So the froze
mean µt1 has to be augmented with zeros to get a modified mean µ̂t1 .

With continuous augmentations the reduced state x′k|k also will start
growing. To keep the dimensionality of x′k|k manageable, we decompose
it continuously by distributing newly learned knowledge over the froze
mean µt1 and select a new reduced basis.

To model the desired variation while retaining standard operations on
the camera, here we perform reduction only upon landmark states. As the
first step, landmarks observed up to time t = t1 are decomposed, keeping
the camera state intact by directly transferring it into the reduced state.

When landmarks are static, the prediction involves estimating the
camera and its covariance with cross-covariance [1]. As we transfer the
camera state directly in to the reduced state x′t , camera parameters can
be predicted in the usual manner while keeping x′yt

unchanged to get the
predicted state x′t|(t−1). The covariance block in the reduce covariance Σ′t
corresponding to the camera state has to be added with process noise to
get the predicted covariance Σ′t|(t−1).

State update is done by projecting the measurement model onto the
reduced space. Measurement model Jacobian Ht , can be projected onto
reduced space by a right multiplication. If we drop the subscript t and
denote the Jacobian as H:

Hs = HUst1 (10)

Using these construction, in this paper we introduce a dimensional-
ity reduction technique to handle the complexity growth of the extended
Kalman filter for SLAM. Though the Kalman filter is not the state of
the art any more with current sparse matrix methods, we believe still the
Kalman filter has a considerable potential generally in computer vision.
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