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Abstract

This paper presents a novel algorithm for calculating epipolar geometry from 5 cor-
respondences. The algorithm directly solves for the orientation of each camera relative to
the baseline that separates them and is able to impose the half plane constraints that arise
from the requirement that visible landmarks must be in front of both cameras. The algo-
rithm is conceptually simple, and provides numerically stable solutions that are used as
a hypothesis generator within RANSAC. It is significantly faster than existing methods
and is comfortably able to provide frame-rate performance on real data.

1 Introduction

Relative pose estimation is an important problem in computer vision for applications such as
structure from motion and augmented reality. The well-known essential matrix, a 3×3 ma-
trix which contains relative pose information, was first introduced by Longuet-Higgins [11].
This work led to the normalized 8-pt algorithm [4] for uncalibrated cameras, and the 6-pt [15]
and 5-pt algorithms [13] for calibrated cameras.

The 5-pt algorithm is the current state-of-the-art in relative pose estimation. It is a
minimal-set direct solver which solves the essential matrix as a system of polynomial equa-
tions. Here we introduce an iterative method that provides improved performance. We make
the following contributions:

• A novel geometrically meaningful error function which encodes half plane constraints
arising from the visibility criterion [21].

• Robust and real-time essential matrix estimation, with an average of 30fps.

Although direct solvers offer a closed-form solution, the use of high degree polynomials
may lead to ill-conditioning and they are difficult to solve [1]. Iterative solvers, on the other
hand, are numerically stable. Although convergence is not guaranteed for iterative solvers,
they are usually simpler and faster compared to direct polynomial solvers. Hence, when used
within RANSAC, more hypotheses can be evaluated in the same block of time, resulting in
improved performance and robustness.
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2 Related Work
Philip [14] first introduced the 5-pt algorithm, solving the essential matrix using a 13th de-
gree polynomial. Nistér’s 5-pt algorithm [13] improved the work of Philip by reducing the
polynomial to a 10th degree polynomial. Since then, several alternatives which avoid using
high degree polynomials have been proposed. These alternatives sacrifice speed for sim-
plicity. [7, 9, 19] represented the polynomial constraints on the essential matrix in different
ways: [19] used Gröbner bases, [7] used the hidden variable technique, and [9] represented
the constraints as a cubic polynomial eigenvalue problem.

Batra et al. [1] estimated the essential matrix and translation vector simultaneously as a
constrained optimization problem. Naroditsky et al. [12] introduced the 3-plus-1 algorithm,
which uses 3 point correspondences and 1 directional correspondence to solve the relative
pose problem. It is faster than the 5-pt algorithm and provides better rotational performance.
However, the 5-pt algorithm performs better for sideways translational motion.

Recent approaches for estimating the essential matrix include [5, 8, 10]. The work in
[5] and [10] parametrize the image plane as a unit sphere, similar to our work. Hartley
and Kahl [5] searched for a rotation which minimizes the angular error between estimated
and measured image points. However, this approach is exhaustive and is not suited for
real-time applications. Lim and Barnes [10] used antipodal point correspondences from an
omnidirectional camera to estimate the epipole location. Kneip et al.’s [8] approach uses
an inertial measurement unit to obtain relative rotation whereas the translation between two
cameras is computed iteratively using the constraint of the intersection between two epipolar
planes. In contrast, our approach uses only visual information and computes both relative
rotation and translation between two cameras using the angle between epipolar planes.

Iterative solvers for solving the essential matrix were proposed in [6] and [17], which
used parametrizations that are different from the work in this paper. [6] and [17] uses a
parametrization based on an algebraic error constraint, which does not enforce orientation
consistency between points. By contrast, our parametrization, which is based on a geometric
error, allows the incorporation of the half plane constraint and thus enforces orientation
consistency between points.

2.1 Epipole Parametrization
Figure 1 shows the geometry of two views. A coordinate frame for the geometry is chosen
such that the z-axis ez joins the two camera centres. In this frame, vectors v̂i and v̂′i and ez
are coplanar. The goal of the iterative 5-pt algorithm is to find a rotation for each of the
two cameras that maps from their internal coordinate frame to that of Figure 1. In order to
do this, the image plane for each camera is represented as a unit 2-sphere. Image points in
normalized camera coordinates [x,y,1]T are mapped to unit vectors that lie on the sphere by
dividing by

√
x2 + y2 +1, giving

û =
[x,y,1]T√
x2 + y2 +1

, û 6=−û. (1)

At each iteration, the normalized point correspondences ûi↔ û′i are left multiplied with
the rotations R and R′, giving the rotated point correspondences

v̂ = Rû, v̂′ = R′û′. (2)
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Figure 1: Visual concept of iterative 5-pt algorithm. Image planes are represented as unit
spheres, constraining the epipole to lie on the sphere’s surface. Here, the rotated point cor-
respondences lie on the same plane as the epipoles.

This rotates the two unit spheres and changes the direction of the epipoles. By rotating
the unit spheres such that the z-axis ez is aligned with the epipoles, i.e. ez = Re = R′e′, the
rotated point correspondences v̂i↔ v̂′i become coplanar with the epipoles e,e′. The estimated
epipole location is then given as

e = RT ez, e′ = R′T ez. (3)

2.2 Error Function
If R and R′ are incorrect then v̂i and v̂′i will not lie on a common plane with ez. In particular
there will be a non-zero angle between the plane defined by v̂i and ez and the plane defined
by v̂′i and ez. The angle can be computed by projecting v̂i and v̂′i onto the x-y plane and
computing the angle between the two vectors. This is analogous to looking at a plane in the
direction of ez (see Figure 2). The 3D unit vectors become 2-vectors pi and pi

′ on the plane,
which can be obtained simply by discarding the third element in the 3D vectors.

The 2-vectors have angles Ai and Ai
′ respectively, relative to the x-axis ex of the plane.

Instead of testing whether the epipole lies on an allowed segment of a conic [21], we enforce
the half-plane constraint by noting that the angles Ai and Ai

′ will be equal if and only if the
back-projected rays from the image points lie on the same half-plane. We define the residual
error for each rotated point correspondence as the angle between their projections onto the
z-axis. Let [xi yi zi]

T be the 3-vector of a rotated point v̂i. The angle of the rotated point
relative to ex on the 2D plane is

A(v̂i) = atan2(yi,xi), (4)

and the residual error associated with each rotated point correspondence is

ri = A(v̂i)−A(v̂′i), (5)

taking care when A(v̂i) and A(v̂′i) are near ±π . In other words, if A exceeds |π|, it has to
be either added (A < −π) or subtracted (A > π) with 2π to ensure that A stays within the
range of atan2(). Point correspondences not lying on the same half-plane produce an angular
difference greater than 90◦.
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Figure 2: Rotated points orthogonally projected onto the plane tangential to the z-axis ez.
The point pair p1 ↔ p′1 lie on the same radial line and has a zero residual error whereas
p2↔ p′2 has a non-zero residual error. p3↔ p′3 satisfies the epipolar constraint but does not
lie on the same half-plane, hence it does not have zero error.

2.3 Update of Rotational Parameters
The essential matrix has 5 degrees of freedom (DOF) but two rotations provide a total of
6DOF—the gauge freedom is the rotation of both cameras about the joint z-axis ez. Thus,
we constrain R′ to have no component of rotation about its z-axis, giving 5 parameters α j,
where α1−3 represents R and α4,5 represents R′. At each iteration, the rotational parameters
are updated as

Rk+1 = e∑
3
i=1 αiGiRk, R′k+1 = eα4G1+α5G2R′k. (6)

In order to update the rotation parameters, the Jacobian for a rotated point pair is derived
through partial differentiation of the residual error ri relative to α1−5. Representing the
projected point pi as the 2-vector [xi,yi], the partial derivatives of the angle Ai relative to xi
and yi are given by

∂Ai

∂xi
=

xi

x2
i + y2

i
,

∂Ai

∂yi
=− yi

x2
i + y2

i
. (7)

Using the 3-dimensional Lie group, SO(3) [20], the exponential map parametrization is
used to represent rotation through the generators

G1 =
[0 0 0

0 0 −1
0 1 0

]
.G2 =

[ 0 0 1
0 0 0
−1 0 0

]
, G3 =

[0 −1 0
1 0 0
0 0 0

]
,

This allows the partial derivatives of xi and yi relative to α1−5 to be derived easily, which are
given as

∂xi

∂α j
= (G j v̂i)[0],

∂yi

∂α j
= (G j v̂i)[1]. (8)

Equations 7-8 are combined using the chain rule to give the Jacobian

J =
(xi)((G j v̂i)[1])− (yi)((G j v̂i)[0])

x2
i + y2

i
. (9)

Using the LM algorithm, the change to be applied to the rotational parameters α j is

δ = (JT J+λ I)−1JT r. (10)

This process is repeated iteratively until the algorithm converges. The algorithm terminates
early if the L2-norm of δ is smaller than 10−10, or if the sum of squared errors is smaller
than 10−20.
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2.4 Recovery of Essential Matrix

The essential matrix is a cross-product between a translation and a rotation:

E = [t̂∧]RE , (11)

where t̂ is a translation, [t̂∧] is a skew-symmetric matrix, and RE is a rotation matrix. The
essential matrix is recovered through the two rotations R,R′ and the second epipole e′. The
translation t̂ is given by the second epipole e′ whereas the rotation matrix is

RE = R′T R. (12)

Noting that e = RT ez and e′ = R′T ez, the essential matrix is recovered as

E = R′T [ez∧]R. (13)

2.5 Approximation of atan2

The single most expensive part of the algorithm is performing atan2(). We use a quadratic
approximation of the atan2() function [16], which gives a maximum error of 0.0038 radians:

atan2(y,x) =


φ(s) if y≥ 0,x≥ 0,
π−φ(s) if y≤ 0,x≥ 0,
−π +φ(s) if y≤ 0,x≤ 0,
−φ(s) if y≥ 0,x≤ 0,

(14)

where
s = (|x|− |y|)/(|x|+ |y|), and (15)

φ(s) =
π

4
(1+ s)+0.273(1−|s|). (16)

2.6 Iterative 5-pt algorithm with RANSAC

The iterative 5-pt algorithm is used in conjunction with RANSAC [2] to make it robust to
outliers. A number of hypotheses are generated, with each hypothesis initialized with the
two rotation matrices R and R′ being at identity. Each hypothesis is scored using the squared
angular error function, i.e. (A(v̂i)−A(v̂′i))

2. We weigh each point pair according to the
distance of the points to the epipole, which is simply the Euclidean distance from the origin
of the 2D plane in Figure 2 to the 2-vector pi. Points closer to the epipole are assigned a
smaller weight as they have a smaller distance error for the same angular error. Let di and d′i
be the distance of a point pair to the epipole. Each point pair has a weight

w =
2

1/d2
i +1/d′2i

. (17)

The best hypothesis is then refined by extending the iterative 5-pt algorithm to use multiple
points.

Citation
Citation
{Rajan, Wang, and Inkol} 2006

Citation
Citation
{Fischler and Bolles} 1981



6 LUI, DRUMMOND: ITERATIVE 5-PT ALGORITHM

2.7 Triangulation
Detected inliers can now be easily triangulated by making use of cylindrical coordinates. The

vectors v̂i and v̂′i can be transformed into cylindrical coordinates by dividing by
√

x2
i + y2

i and√
x′2i + y′2i respectively:

v̂i/=
√

x2
i + y2

i , v̂′i/=
√

x′2i + y′2i . (18)

In this coordinate frame, ||xi,yi|| = 1 and ||x′i,y′i|| = 1, so the inliers should have xi = x′i
and yi = y′i since inliers have [xi,yi] pointing in the same direction as [x′i,y

′
i]. The disparity

|zi− z′i| now encodes the cylindrical radial distance to the point, so setting

Pi =
v̂i

|zi− z′i|
and P′i =

v̂′i
|zi− z′i|

(19)

gives the coordinates of the triangulated point in the coordinate frame of Figure 1. Note
that this calculation guarantees that pi = p′i± ez as should be the case because the vector ez
represents the motion between the two cameras in the frame of v̂i and v̂′i. The coordinates
of the triangulated point in the original camera frames can then be recovered by simply
multiplying Pi and P′i by RT and R′T :

Qi = RT Pi and Q′i = R′T P′i (20)

3 Results
The iterative 5-pt algorithm is evaluated using synthetic and real data. Firstly, the perfor-
mance of the algorithm and its convergence radius are tested using synthetic data. Next,
the timing performance of the iterative 5-pt algorithm is compared with Nistér’s direct 5-pt
algorithm [19] using both synthetic and real data.

3.1 Synthetic Data
250 synthetic point pairs are generated through a synthetic point cloud and a projection
matrix. Using a camera with a 67.38◦ FOV and assuming that the first camera is at identity,
the point cloud is projected onto the second camera. Outliers and noise can then be added to
the point correspondences.

3.1.1 Influence of Initial Guess

To test the influence of the initial guess of the epipole location on the iterative 5-pt algorithm,
the initial guess of the epipole location is varied from being 5◦ to 25◦ away from the true
epipole location. The iterative 5-pt algorithm is applied to 5 pairs of synthetic point corre-
spondences for 10 iterations. The angular error between the true and estimated translation
vector is computed, whereas rotational performance is measured using the Frobenius norm of
the difference between the estimated and true rotation. The experiment is conducted twice,
once without noise and the other with a random Gaussian noise of σ = 0.001. Figure 3
shows that both datasets follow the same trend, with the noisy dataset displaying slightly
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Figure 3: Influence of the initial guess of epipole locations on the performance of our iterative
5-pt algorithm with and without noise for forward and sideways motion.

larger errors. As the initial guess of the epipole location is slowly moved away from the true
epipole location, forward motion performance degrades faster compared to sideways motion.
However, in practice, as the iterative 5-pt algorithm is initialized with the two rotations being
at identity, i.e. the two epipoles are initially at the z-axis, it more than compensates for this
degradation, as shown in the real data experiments.

3.1.2 Timing

We compare the average time to generate a successful hypothesis between the iterative 5-pt
algorithm and Nistér’s direct 5-pt algorithm for different outlier fractions. Firstly, 10,000
projection matrices are generated, each consisting of a random translation (up to 1 unit) and
a rotation of up to 30◦ about one of the three Cartesian coordinate axes. For each projection
matrix, a hypothesis is generated and the solution is iteratively refined using all the inliers
found. To perform iterative refinement over all inliers, the iterative 5-pt algorithm is extended
to a multi-point solver whereas an extension of Rosten et al.’s iterative 5-pt solver to multiple
points [17] is used for the direct 5-pt algorithm. If the final number of inliers exceed 80% of
the total number of inliers, the hypothesis is considerered a success.

Let h be the number of successful hypotheses, tavg be the average time to generate one
hypothesis, and n be the average number of solutions generated for each hypothesis (for the
iterative 5-pt algorithm, n is always 1). Assuming that the time to compute consensus, tc is
equal for both algorithms, the time to generate a successful hypothesis is

ts =
10000

h
(tavg + tcn). (21)

The results are shown in Figure 4, where the timing of a C implementation of the iterative
5-pt algorithm is measured on a 3.4 GHz machine. For the direct 5-pt algorithm, because we
only have a MATLAB implementation of Nistér’s 5-pt algorithm 1, we use this to calculate
the success rate of hypotheses, but substitute timing for an optimised implementation of the
algorithm reported by Naroditsky et al. [12] of 13µS scaled down to 11.47µS for tavg as

1http://www.vis.uky.edu/ stewe/FIVEPOINT/
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Figure 4: Left: The % of successful hypotheses with increasing outlier fraction. Right:
Average time to generate a successful hypothesis with increasing outlier fraction.

Figure 5: Graphs for experiment with real data and samples of real image sequences, show-
ing % of successful hypotheses and the average time to generate a successful hypothesis for
left: sideway motion, and right: forward motion

we are using a 3.4GHz machine by comparison to the 3GHz machine used to generate that
timing.

The average time to compute consensus, tc is about 10.0µS. For low outlier fractions,
the direct 5-pt algorithm records a greater % of successful hypotheses. However, there is
an expensive cost associated with consensus checks, as the direct 5-pt algorithm generates
an average of n = 4.5 solutions for every hypothesis generated. Hence, the average time re-
quired by the iterative 5-pt algorithm to generate a successful hypothesis is smaller compared
to the direct 5-pt algorithm. As the outlier fraction increases, the iterative 5-pt algorithm out-
performs the direct 5-pt algorithm by a factor of 2.5.

3.2 Real Data

Two sets of real image sequences are generated, one for sideways and another for forward
motion so that the direction of motion is known (see Figure 5). The camera used to capture
the images is calibrated using an open-source MATLAB camera calibration toolbox 2. There
are 16 images in each dataset, and each image has a fixed baseline from the previous image

2http://www.vision.caltech.edu/bouguetj/calib_ doc/
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Figure 6: Inlier point matches from iterative 5-pt algorithm, and top view of triangulated
inliers as well as the epipole directions.

in the sequence (2cm for sideways motion, 1cm for forward motion). Image pairs are formed
between the first image and the Nth ∈ 2 . . .16 frame in the dataset, therefore slowly increasing
the baseline. The scene depth varies from about 3m to infinity for sideways motion, and from
about 1m to 1.5m for forward motion.

For each image pair, we detect features using Harris corners [3] and find 250 putative
point correspondences using OpenCV’s implementation of the ORB (Oriented FAST & Ro-
tated BRIEF) feature descriptor [18]. Two sets of matches are stored, one with all the 250
point correspondences whereas the other set filters out matches with a matching distance
greater than a threshold of 40.

The essential matrix is estimated using standard RANSAC for both algorithms as this
gives a familiar baseline for comparing timings. In practice, both algorithms can be used
within more sophisticated RANSAC variants to further optimize computational efficiency.
Samples of 5 point pairs are drawn randomly from the set of filtered matches, and consensus
check is performed using the set of all matches. For each algorithm, only 1 hypothesis
is generated in RANSAC. Iterative refinement is performed on all the inliers found so far,
similar to the synthetic data experiment. We consider the hypothesis successful if the final
estimated translation has an angular error less than 5◦. For every image pair, the experiment
is repeated 10,000 times so that the average time to generate a successful hypothesis can be
computed.

The results (see Figure 5) show that the iterative 5-pt algorithm requires less time to
generate a successful hypothesis compared to the direct 5-pt algorithm. For small baselines,
the average time to obtain a successful hypothesis for the direct 5-pt algorithm is smaller
compared to the iterative 5-pt algorithm. However, once the baseline increases, the iterative
5-pt algorithm dominates as pixel motion between the two views increases. For the plot
on sideways motion, it can be seen that a small decrease in the percentage of successful
hypothesis for the direct 5-pt algorithm leads to a spike in the average time to obtain a
successful hypothesis due to the cost of consensus checks.

3.3 System Results
Figure 6 shows the inliers found using the iterative 5-pt algorithm, and the triangulated inliers
viewed from the top. We use 1000 features here so that we have a denser reconstruction of
the scene. On average, the timing breakdown of the system for 250 points is shown in Table
1.

4 Conclusion
We have presented a novel, iterative 5-pt algorithm to estimate the essential matrix robustly
and in real-time. Using the parametrization presented in this paper, the inlier points can be
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Component Time (mS)
Feature detection, extraction & matching 12.7926
Iterative 5-pt algorithm with RANSAC 7.1126
Inliers refinement 0.4157
Drawing 1.9433

Table 1: Timing breakdown of live video implementation, averaged from 100 frames.

triangulated easily using cylindrical coordinates. We have also implemented a live video
implementation of the iterative 5-pt algorithm, and showed that it can run at frame-rate.
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