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The essential matrix, first introduced by Longuet-Higgins [5], is a
3× 3 matrix encoding the relative pose information between two views.
Conventional approaches for relative pose estimation is to solve a system
of linear equations. The 5-pt algorithm [6] is the current state-of-the-art
algorithm in relative pose estimation. It is a minimal-set direct solver
which solves the essential matrix as a system of polynomial equations.

We show in this paper an iterative method which provides robust and
real-time essential matrix estimation, capable of 30Hz, frame-rate per-
formance. The benefit of an iterative approach lies in its simplicity and
speed. The use of high degree polynomials may lead to ill-conditioning
[1] and are often difficult to solve, leading to alternative methods which
sacrifice speed for simplicity [1, 3, 4]. Although convergence is not guar-
anteed, when used within RANSAC, more hypotheses can be evaluated in
the same block of time, yielding improved performance. While iterative
solvers which minimizes the algebraic epipolar reprojection error have
previously been proposed [2, 7], our parametrization is based on a novel
geometric error which incorporates the half-plane constraint [8] and thus
enforces orientation consistency between points.

Figure 1 illustrates the concept of our iterative 5-pt algorithm. A coor-
dinate frame is chosen such that the z-axis ez joins the two camera centres.
In this frame, vectors v̂i and v̂′i and ez are coplanar. The goal is to find
a rotation for each of the two cameras that maps from their internal co-
ordinate frame to that of Figure 1. We parametrize the image for each
camera as a unit 2-sphere, mapping image points in normalized camera
coordinates [x,y,1]T to unit vectors by dividing by

√
x2 + y2 +1.

At each iteration, the normalized point correspondences ûi ↔ û′i are
left multiplied with the rotations R and R′, giving the rotated point corre-
spondences v̂ = Rû, v̂′ = R′û′. This rotates the two unit spheres, chang-
ing the direction of the epipoles. By rotating the unit spheres such that the
z-axis ez is aligned with the epipoles, i.e. ez = Re = R′e′, v̂i↔ v̂′i become
coplanar with the epipoles e,e′. The epipoles can then be computed as

e = RT ez, e′ = R′T ez. (1)

The error function to be minimized is based on the idea that if R and
R′ are incorrect, there will be a non-zero angle between the plane defined
by v̂i and ez and the plane defined by v̂′i and ez. We compute this angle by
projecting v̂i and v̂′i onto the x-y plane, using the atan2() function:

A(v̂i) = atan2(yi,xi), (2)

where [xi yi zi]
T is the 3-vector of a rotated point v̂i. The residual error

associated with each rotated point correspondence is then given as

ri = A(v̂i)−A(v̂′i), (3)

We constrain R′ to have no component of rotation about its z-axis as
two rotations provide 6 degrees of freedom (DOF) but the essential matrix
has only 5DOF—there is a rotational gauge freedom about the joint z-
axis ez. This gives 5 parameters α j, where α1−3 represents R and α4,5
represents R′. At each iteration, the rotational parameters are updated as

Rk+1 = e∑
3
i=1 αiGi Rk, R′k+1 = eα4G1+α5G2 R′k. (4)

where Gi represents the SO(3) Lie group generators. To update the ro-
tation parameters, the Jacobian of the error relative to α1−5 has to be
computed. Representing the projected point pi as the 2-vector [xi,yi], the
Jacobian is given as

J =
(xi)((G j v̂i)[1])− (yi)((G j v̂i)[0])

x2
i + y2

i
. (5)

Using the LM algorithm, the change to be applied to the rotational
parameters α j is δ = (JT J + λ I)−1JT r. This process is repeated itera-
tively until the algorithm converges. Using our iterative 5-pt algorithm as
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Figure 1: Visual concept of the iterative 5-pt algorithm. Image planes are
represented as unit spheres, constraining the epipole to lie on the sphere’s
surface. Here, the rotated point pairs are co-planar with the epipoles.

a hypothesis generator within RANSAC, the essential matrix can then be
recovered simply from the best hypothesis, with the translation t̂ given by
the second epipole e′, and the rotation matrix given by R′T R.

In our approach, detected inliers can be easily triangulated using cylin-
drical coordinates. The vectors v̂i and v̂′i can be transformed into cylindri-

cal coordinates by dividing by
√

x2
i + y2

i and
√

x′2i + y′2i respectively. In
this coordinate frame, ||xi,yi|| = 1 and ||x′i,y′i|| = 1, so the inliers should
have xi = x′i and yi = y′i since inliers have [xi,yi] pointing in the same di-
rection as [x′i,y

′
i]. The disparity |zi− z′i| now encodes the cylindrical radial

distance to the point, so setting

Pi =
v̂i

|zi− z′i|
and P′i =

v̂′i
|zi− z′i|

(6)

gives the coordinates of the triangulated point in the coordinate frame of
Figure 1. This calculation guarantees that pi = p′i± ez because the vector
ez represents the motion between the two cameras in the frame of v̂i and
v̂′i. The coordinates of the triangulated point in the original camera frames
can then be recovered by simply multiplying Pi and P′i by RT and R′T , i.e.
Qi = RT Pi and Q′i = R′T P′i .

Full details of our iterative 5-pt algorithm, including the derivation
of the Jacobian, implementation details, and comprehensive experiments.
In conclusion, the simplicity of the method, coupled with the ability to
easily triangulate inlier points, makes it a useful method for relative pose
estimation.
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