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Abstract

We present a method for detecting bilateral or reflective symmetries in images. We
pose the problem as an instance of a multiple model estimation problem. We build can-
didate symmetry models by randomly sampling minimal sets of SIFT matches. Since
these symmetry models can be in non-frontal viewpoints, we rectify them, undoing the
perspective effect. From the models with valid symmetric properties, we compute con-
sensus sets by determining which SIFT matches are compatible with each symmetry
model. We finally recombine these consensus sets, using a clustering algorithm. The
method is able to detect single and multiple symmetries both in frontal and non fronto-
parallel viewpoints, achieving state-of-the-art results.

1 Introduction

Symmetry is omnipresent in natural and synthetic images. Human visual perception of the
world largely depends on cues provided by symmetry and repetitive patterns [3]. Automatic
symmetry detection has long been an active research topic in computer vision because it also
helps to enhance the performance of many vision problems, e.g., image segmentation [18],
object recognition [12], person identification [6], vehicle tracking [9], and low-rank texture
detection [23]. There are four types of symmetries in the 2D Euclidean space: translation,
rotation, reflection and glide-reflection [21]. The human visual system is good at detecting
all these symmetries, even under severely slanted viewpoints, while it remains a tough prob-
lem for computer vision. Among these, the most common form is the reflective (also called
bilateral) symmetry, characterized by a line (the symmetry axis) which defines two recipro-
cally mirrored semi-planes. In this paper, we concentrate on detecting this type of symmetry.
The concepts we propose can be nonetheless extended to the other types of symmetry.

A lot of research efforts have been dedicated to automatically detect a single, global, and
dominant bilateral symmetry in images [1, 8, 13, 17]. These global methods consider the
image as a whole and try to infer the global symmetry that produces the best overall fit. This
poses problems when the background of the image is cluttered or the image contains multi-
ple symmetries at different locations and scales. Although global symmetry is an important
image property, encountering multiple local symmetries is far more common in practice.
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Current research is thus oriented to methods based on local features [11, 20]. Finding mul-
tiple symmetries can be posed as a multiple model selection problem. Multi-RANSAC [24]
and randomized Hough transform [22] are two basic model estimation tools that can be used
to detect multiple symmetries. For example, a simple voting strategy was employed for bi-
lateral symmetry detection through a fold-then-cut plane generation and synthesis [10]. Loy
and Eklundh presented a more efficient method based on the Hough transform [11], where
each SIFT match votes either for a bilateral symmetry axis or a center of rotational symmetry
in the parameter space. Later, the work was extended to make use of the recent advance in
invariant features [14] to deal with bilateral symmetry under perspective [4, 5]. Even though
recent work based on a region growing scheme seems to work better [2], Loy and Eklundh’s
work [11] is still considered as the baseline state-of-the-art algorithm.

The Hough transform can naturally cope with multiple symmetries. However, it is not
as robust against outliers as RANSAC [7] and is sensitive to the selection and discretization
of the parameter space. The J-linkage algorithm was recently proposed to detect multiple
primitive geometric structures in noisy and outliers-corrupted data [19]. It combines ideas
from RANSAC (robustness against outliers) and the Hough transform (multiple structures
detection through voting schemes). The input of the algorithm is a set X of geometric objects
(e.g., 2D points). J-linkage randomly samples minimal sets of objects from X and creates
candidate models (e.g., if the model is a line, two points are sufficient to define it). It then
records, for each candidate model, its consensus set, i.e., the subset of X compatible with
that model. This is encoded as a binary preference matrix, whose rows indicate the sampled
models an object belongs to, and whose columns indicate the consensus set for each sampled
model. The objects are finally clustered using the rows as vector features via agglomerative
hierarchical clustering [19]. The clusters that are populated enough, can then be used to
robustly estimate the final models.

We propose a method to detect multiple bilateral symmetries at different scales and view-
points. It is based on the J-linkage framework, presenting specific and novel tools in each
step of the algorithm to adapt it to our problem. These tools, described in Section 2, include:
(1) arectification step that allows us to transform each symmetry to the 2D Euclidean space,
in which validation can be easily performed, while coping with skewed symmetries; (2) a
simple validation criterion to determine valid rectified symmetries and their consensus set;
(3) a non-uniform adaptive sampling strategy, specifically designed to deal with a large set
of matches corrupted by a high percentage of outliers. In Section 3 we present experimental
results showing state-of-the-art results. Finally, we provide some final remarks in Section 4.

2 Multiple symmetry detection with J-linkage

We start by detecting affine-invariant keypoints and obtaining affine-invariant SIFT descrip-
tors with the ASIFT algorithm [15]. We denote by SIFT(p;) the descriptor at keypoint p;.
SIFT also provides the orientation 6; and scale s(p;) at p;. The elements in each SIFT de-
scriptor vector SIFT(p;) are rearranged to obtain their mirrored version, where the line with
orientation 6; is used as the mirroring axis [11]. We then match the SIFT descriptors with
their mirrored versions using a simple nearest-neighborhood search. Let M = {m;} =1, N
be this set of N matches. Each match m; consists of two keypoints, expressed in homoge-
neous coordinates, m; = {p;, p}, with p; = (x;,y;,1)” and p! = (x,y!,1)T. We denote by ;
the line segment connecting p; and p.. We also denote by ¢; the midpoint of 77;.

The R3*3 matrix H such that h33 = 1 (where A;; is the value at the i-th row and j-th
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column) is a 2D homography. This type of transforms models perspective transformations.
Notice that a transformed point q = (xq,yq,zq)T = Hp is normalized such that z, = 1, al-
though the normalization to achieve this is implicit in this paper.

J-linkage-based symmetry detection. Given N matches, we estimate K symmetries by
randomly sampling K valid minimal seed sets from M. We will see that two matches are
sufficient to define a minimal seed set. The exact nature of this process will be covered in
the following subsections. We thus obtain K symmetries, each with an associated consensus
set (the subset of M compatible with each symmetry). A binary N x K matrix is thus built,
where the entry (i, ) is 1 if the i-th match is in the consensus set of the j-th symmetry,
and O otherwise. Each row of this matrix indicates which symmetries are preferred by each
match and is considered as a binary feature vector for that match. Using these features,
agglomerative hierarchical clustering based on the Jaccard distance [19] is used to cluster
the matches. Finally, each, large enough, cluster corresponds to a local symmetry.

2.1 Estimating a fronto-parallel symmetry by rectifying match pairs

If the symmetric region only undergoes a similarity transform (rotation, translation and
zoom), one match m; is enough to determine the symmetry axis [11], which is orthogonal to
the segment p;p/ and passing through ¢;. However, in practice, the symmetry is not necessar-
ily observed in a frontal view and can thus undergo some perspective distortion. In this more
general case, two matches m; = {p;,p|} and my = {po,p5} intersecting at the vanishing
point v = (v, Vy, l)T are necessary to determine the symmetric axis (see Fig. 1(a)). We will
undo this perspective distortion, that is, rectify the symmetry, thus being able to determine
the compatibility of the remaining matches in the simpler 2D Euclidean space.
A homography H can be decomposed into

1 0O O
H=—ARHy,—AR| 0 1 0, (1)
h31 hyp 1

where Hy and A are a projective transform and a shear, respectively, and R is a rotation. We
will compute H and use it to bring the symmetry into a fronto-parallel setting. This process
is depicted in Fig. 1(a).
We begin by computing Hy. This transform needs to send the vanishing point v to infin-
ity, that is,
h31vy + h32Vy +1=0. 2)

For choosing the remaining degree of freedom we add the constraint that the required scale
change factor at the four keypoints of m; and m; is as close as to 1 as possible. Intuitively,
among all possible Hy, we select the one that is closer to the identity matrix, i.e., the one
introducing the least perspective effect. This amounts to computing
min (h31x; + h32yi)* + (h31x} + haoy))?. 3)
h31,h30 ;.57

Geometrically, this choice can be interpreted by rotating the camera as little as possible to
make the vanishing point at the infinity. By plugging Eq. (2) in this minimization, we obtain
a one-variable least-square problem which can be easily solved.

For computing R, we simply constrain the vanishing point (now at infinity) to lie on
the x axis. Finally, A is obtained by estimating the shear that aligns the two corresponding
midpoints ¢, ¢, with the y axis.
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Figure 1: (a) Finding the rectification homography (H = ARH) from a pair of matches.
(b) Compatible matches test given a rectified symmetry.

The homography H is then applied to the keypoints of all the matches m; € M. In this
rectified plane, all the matches compatible with the reflective symmetry defined by m,m,
should be parallel with the seed line segments 77,71, and have their midpoint on the sym-
metric axis. Obviously, this is an ideal scenario and in practice we need to relax this criterion.
Let Hp, (resp. le) be the point that is actually symmetrlc to Hp; (resp. le) We then mea-
sure the ratio between the segment with endpomts Hp), Hp, (resp. Hp;, Hp’ ) and the segment
with endpoints Hp;, Hpi (resp. Hp/, Hpi). See Fig. 1(b) for a graphical representation. If
both ratios are smaller than a precision parameter 1, the match m; is added to the consensus
set.

2.2 Validating the seed matches

We need to ensure that the two randomly sampled seed matches m; and m; lead to a valid
symmetry model. We perform the following sanity checks in order to reject invalid models:

e Since we are dealing with reflective symmetries, the segments 772; and 777, must not inter-
sect before and after rectification;
e The keypoint scales must become approximately similar after rectification,

|8(pi) — 8(p;)|/ max(§(p;),8(p;)) < 8, i=1,2, )

where $(p;) denotes the scale at p; after rectification and § is a precision parameter;
e The sum of the orientations 6;, 6/ at p;, p} after rectification, must be approximately equal
to 7 (these orientations are not very robust). We check the condition [16] (see Fig. 2)

14cos(6;+6)) <e, i=1,2, 5)
where € is a precision parameter.
We could have used these sanity checks to constrain more the homography H. But since the

scale and orientation of the keypoints is not very precise, the estimation of the homography
can be instable.
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Figure 2: A schematic representation of two matching keypoints. On the right, the match
m; = {p;,p;} with corresponding angles 6;, 6/ (i.e., 6;, 6/ transformed by the rectification).

2.3 Adaptively sampling seed matches

One of the keys for the success of the J-linkage algorithm is choosing a proper non-uniform
sampling. The rationale behind this is the intent to oversample the true symmetries in the
image, thus obtaining stable row features that robustify the clustering process. Among all of
the sampled model seeds, it is desirable that there is at least a certain number of outlier-free
model seeds sampled around each underlying true model. In [19, 24], non-uniform sampling
is used to detect multiple simple geometric models in point clouds, like lines, circles, or
planes, by assigning a higher probability to neighboring points.

We use the following adaptive non-uniform sampling strategy. The first match is sampled
according to the following mixed probability, Vm; = {p;,p}} € M,

Pr(m) = exp (&5 (ISIFT(p) = SIFT()] ~ o~ & (Ipi—pi] 10 ). ©

where dp and [y indicate the scale in the descriptor domain and image domain at which we
prefer to detect the symmetry, Z; is a normalization factor such that ¥, Pr(m;) = 1, and,
finally, o, and o; decide how strict the preferences are. Ideally, we should have dy = 0, but
since some parts of the image match closely than others, we might end up missing some
symmetries. We thus relax this constraint.

In practice, an image can contain multiple symmetries at different scales. Automatically
updating the parameters of Eq. (6) to find all possible symmetries is not an easy task. This
motivates us to update the sampling probability of the first match along the sampling process.
Each time two seed matches are sampled and its consensus set M is computed, we decrease
the probability of all these matches by a factor k close to 1, followed by the renormalization
of the probability:

probability update (followed by renormalization) :  Pr(m;) <+ kPr(m;), m; € My. (7)

This guarantees that the sampling will not solely focus on symmetries with “high quality”
matches and “lower quality” matches will also be visited.

Once the first match is sampled following the above adaptive non-uniform sampling, we
sample the second match according to the conditional probability:

Pr(m|m) = oxp (— (e — ¢l —co)?) mi € M, mje M\{m},  ®)

where 7 is a normalization factor such that Y. ;Pr(m;|m;) = 1, ¢; is the midpoint of line
segment 77;, and O, cq control the shape of the probability function.
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Algorithm 1: Non-uniform adaptive sampling.
Data: matches M = {m;},i=1,---,N
Result: preference matrix P
Initialize the sampling probability Pr(m;) and Pr(m;|m;) according to Eq. (6) and (8 ) ;
Sampling counter Kepynrer <— 0 3
flag_uniform_sampling =0 ;
Consensus set to be uniformly sampled Cy < 0 ;
while K.oyner < K do
Kiriat < 05
while Kiriar < Kmaxftrial do
Kirvial < Kirial + 1
if flag_uniform_sampling = 0 then
‘ Sample two seed matches according to probability Pr(m;) and Pr(m |m;);
else
L Sample two seed matches uniformly in the consensus set Cp;

Rectify my,m; (see Section 2.1) ;
| If the seeds do not form a valid model (see Section 2.2) continue sampling;

If the seeds do not form a valid model (see Section 2.2) terminate the algorithm;
Compute the consensus set C for the rectified m|,m; (see Fig. 1(b)) ;
Add the consensus set C to preference matrix P;
Update the probability Pr(m;) according to Eq. (7) ;
Keounter < Keounter +1;
if flag_uniform_sampling = 1 then
L Kunifarmfsampling « Kunifurmfsampling +1;
if flag_uniform_sampling =0 A |C| > T then
flag_uniform_sampling < 1 ;
Kuniformfsampling 05
Initialize the set to be uniformly sampled: Cy < C ;
if flag_uniform_sampling =1 A |C| > |Cp| then
L Update the set to be uniformly sampled: Cy < C ;

if flag_uniform_sampling =1 N Kyyitorm_sampling = Ku then
L flag_uniform_sampling < 0;

If the current consensus set C is big enough, i.e., |C| > T for some T, we switch to
uniformly sample K|, seeds inside C. This ensures that good models are oversampled.

The overall adaptive non-uniform sampling procedure is summarized in Alg. 1. Given
the preference matrix, we run the J-linkage algorithm to cluster the matches.

3 Experimental results

For all experiments, we randomly select N = 3000 keypoints/features from the ones provided
by ASIFT [15]. These features are matched to their mirrored version by nearest neighbors
matching (one neighbor per feature for single symmetry detection and four neighbors per
feature for multiple symmetry detection). We initialize the probabilities in egs. (6) and (8)
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Synthetic Single Synthetic Multiple

LE[11] LHXS [10] CL [2] Proposed LE[11] LHXS[10] CL [2] Proposed
TP/GT 92% 62% 100%  100% 35% 28% 7% 67%

FP/GT 15% 0% 15% 0% 4% 8% 33% 10%
Real Single Real Multiple
LE[11] LHXS [10] CL [2] Proposed LE[11] LHXS[10] CL [2] Proposed
TP/GT 84% 29% 94% 97% 43% 18% 68% 65%
FP/GT 68% 3% 69% 39% 44% 0% 17% 16%

Table 1: Performance comparison of several methods on the PSU dataset [12]. TP, FP,
and GT respectively denote the number of true positives, false positives, and ground truth
symmetries. The percentage of the methods are taken from [12] and [2].

with the values

do =y ¥ ISFT(p) ~SIFT(p)]|. o = 5 ma, ISIFT(p;) ~SIFT())[P, ()

m;eM
1/2
o= & (W2 + 1) o = 15 max [Ipi —pil* (10)
1/2
co = 55 (W + 1) o; =15, max, flei—el, (1D

M

where w and & are the width and height of the image, respectively. The probability Pr(m;) is
updated using k¥ = 0.98 in Eq. (7). We check the validity of every non-uniformly sampled
match pair by setting § = 0.2 and € = 0.25 in egs. (4) and (5). The matches compatible with
the sampled symmetry models with parameter 1 = 0.04 (Fig. 2b) are considered as inliers
and added to the consensus sets. We also set K = 4000, 7 = 10, and K, = 30. After the
J-linkage clustering, only symmetries containing at least 10 matches are kept. We finally
apply a non-maximum suppression on the clusters whose symmetry axes are close.

We first compare the proposed method with three recent ones [2, 10, 11] on the PSU
dataset [12], which is composed of 88 images.' The symmetries are either frontal or slightly
skewed. This dataset covers four types of images: synthetic single reflection, synthetic mul-
tiple reflection, natural single reflection, and natural multiple reflection. We should point
out that even though PSU provides a reliable benchmark dataset for comparing symmetry
detection algorithms, the ground truth it provides is not always complete and/or accurate.
The results in Table 1 (see some examples in Fig. 3) show that our method is much better
than Loy and Eklundh’s (LE [11]) and Liu et al.’s (LHXS [10]). Compared with Cho et al.’s
(CL [2]) method, we have better performance for single symmetry detection. For multiple
symmetries detection, our method is more conservative, sometimes detecting fewer symme-
tries, which explains the decrease in both the true positive and false positives rates. This
conservative strategy can be explained by the strict criterion used to only create precise con-
sensus sets. Nonetheless, the proposed method results are highly competitive. Notice that,
as a post-processing, we could also adopt Loy and Eklundh’s region growing strategy [11],
in order to expand and further improve the detected symmetries.

I'The original PSU dataset contained 91 images [2, 12] but the original download link is broken. We obtained
a version of the dataset containing 88 images at http://vivid.cse.psu.edu/texturedb/gallery/
album05. Since code is not available for the methods in [2, 10], the results are not exactly comparable but serve
as a performance indicator.
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In non fronto-parallel symmetries, our algorithm is also able to obtain good results. We
include several examples in Fig. 4. The algorithms that were used for comparing in the
frontal setting are not designed for this type of symmetries and would only succeed in those
images where the perspective effect is weak.

Recently, the TILT algorithm [23] was introduced, combining the concept of low-rank
factorization with perspective estimation. Given a manually selected region of interest, it
computes the homography that produces the sub-image with the lowest possible rank. In
Fig. 5, we show that the detected symmetries with their consensus sets (supporting matches)
can be used to automatically select input regions of interest for the TILT algorithm. This
brings forth the relationship between these two concepts: symmetric regions have necessar-
ily a low rank. Even though the regions are not completely flat, the TILT algorithm is capable
of transforming the regions to be a quasi frontal view. Notice that using the rectifying ho-
mography as an initialization of the TILT optimization might also help further improve and
stabilize the TILT results by obtaining a visually better local minimum.

Original image Ground truth CL [2] LE [11] Proposed Proposed (with
supporting matches)

Figure 3: Several symmetry detection results on the PSU dataset. The images on the third
row are borrowed from [2].

4 Conclusion

We presented a method for detecting bilateral symmetries in images. The method detects
symmetries in a rectified image domain by sampling symmetry seeds in a non-uniform adap-
tive manner, and then building candidate consensus sets. Features are built from the consen-
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Original image Proposed Proposed (with Original image Proposed Proposed (with
supporting matches) supporting matches)
& W

Figure 4: Several non fronto-parallel symmetry examples. Our algorithm is able to recover
the symmetries, even when the perspective effect is non-negligible.

Figure 5: Relationship between low rank and symmetry in two examples of images with
detected symmetries. The red bounding boxes represent the regions of the detected symme-
try, which are used as automatic input to the TILT algorithm. The green bounding boxes
represent the low-rank sub-images obtained with the TILT algorithm, projected back to the
original image. We also show the low-rank components before re-projection.
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sus sets and the final symmetries are detected via an agglomerative clustering algorithm.
The method is able to detect single and multiple symmetries both in frontal and skewed
(non fronto-parallel) viewpoints, achieving state-of-the-art results. We plan on extending the
method to detect other symmetry types. We are also investigating a more unified way to
combine the concept of symmetry and low-rank.
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