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Abstract

Visual saliency is a computational process that identifies important locations and
structure in the visual field. Most current methods for saliency rely on cues such as
color and texture while ignoring depth information, which is known to be an important
saliency cue in the human cognitive system. We propose a novel computational model of
visual saliency which incorporates depth information. We compare our approach to sev-
eral state of the art visual saliency methods and we introduce a method for saliency based
segmentation of generic objects. We demonstrate that by explicitly constructing 3D lay-
out and shape features from depth measurements, we can obtain better performance than
methods which treat the depth map as just another image channel. Our method requires
no learning and can operate on scenes for which the system has no previous knowledge.
We conduct object segmentation experiments on a new dataset of registered RGB-D im-
ages captured on a mobile-manipulator robot.

1 Introduction and Motivation

Determining objects of interest in unknown environments is an important task for both hu-
mans and machines. Visual saliency methods are computational processes which guide
the attention of an agent to potentially relevant locations in an image or scene. Standard
approaches to saliency use color, gradient, and intensity differences to distinguish unique
regions from the rest of the visual field. We propose a novel method which incorporates
depth measurements into the computation of visual saliency. Human subject studies have
shown that depth is an important cue in determining salient regions in human visual process-
ing [16, 23]. Depth measurements make it possible to separate objects which may be similar
in appearance. In addition, shape information can be recovered from the depth channel and
used to improve the discriminability of scene elements.

One motivation for saliency research is the development of generic object segmentation
and detection capabilities [6, 10, 11, 24]. As an example, consider a personal robot that
can move through a home environment and manipulate objects. During a clean-up task,
the robot should be able to handle unfamiliar objects for which it has no prior experience.
Saliency provides a basic mechanism for characterizing an unfamiliar scene and generating
hypotheses about potential object locations. We use the task of generic object segmentation
to quantify the effectiveness of our depth-based saliency method. We present a novel seg-
mentation approach that incorporates saliency in an MRF model defined over superpixels.
We demonstrate improved performance over several previous approaches.
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(a) Color Image (b) [7] Saliency Map (c) Our Saliency Map (d) Resulting Segmenta-
tion
Figure 1: An example saliency map and resultant segmentation produced from the color and depth
image pair. Note the two light switches in the upper right of the image, which our approach highlights
as salient regions.

Consider the images presented in Figure 1 captured on a robot operating in a home en-
vironment. The scene has multiple foreground objects of potential interest. Our saliency
method scores all the relevant objects (door handle, light switches, window blind) more
highly than the background elements of the scene. The resulting saliency-based segmenta-
tion successfully separates the foreground objects from the background producing a useful
set of proto-objects for a robot to explore or manipulate.

We have collected a new dataset of color and depth images, which form the basis for
our experimental evaluation. The dataset was collected using a mobile-manipulator robot
in a real-world home environment. The dataset includes ground truth pixel-level segmen-
tations of salient objects that we will release publicly. In summary, this work makes four
contributions:

e We introduce a new method for estimating visual saliency, which combines color and

depth measurements.

o We demonstrate that explicit 3D layout and shape features from depth measurements
produce more informative saliency maps than approaches which simply treat depth as
another channel of the image.

e We present an approach to saliency-based segmentation of generic objects based on a
superpixel MRF and show promising results.

e We introduce a new dataset for depth-based saliency, including ground truth pixel-
level segmentations of salient objects

The paper is organized as follows. Related work on visual saliency and generic object
segmentation is reviewed in Section 2. Section 3 introduces our novel saliency method
and our approach to saliency-based segmentation. We present qualitative and quantitative
experimental results in Section 4. We conclude with a discussion of the work in Section 5.

2 Related Work

We review two bodies of related work: previous methods for visual saliency computation,
including earlier attempts to incorporate depth, and previous works on generic object seg-
mentation and detection using depth. We believe we are the first to present a bottom-up
saliency framework which incorporates both appearance and 3D depth-based features, and
which addresses the use of saliency for generic object segmentation.

2.1 Visual Saliency

Koch and Ullman gave the first comprehensive explanation of how saliency could be com-
puted neurophysical [15]. This work was quite influential in the development of computa-
tional models of saliency in the computer vision community. In an early example of such


Citation
Citation
{Harel, Koch, and Perona} 2006

Citation
Citation
{Koch and Ullman} 1985


CIPTADI, HERMANS, REHG: AN IN DEPTH VIEW OF SALIENCY 3

work Itti et al. compute a saliency map by combining conspicuity maps based on color, inten-
sity, and orientation information, where locally-different patches are found through center-
surround computations [12].

A recent review of computational approaches to visual saliency can be found in [2].
We briefly review several state-of-the-art methods. Goferman et al. [6] computes a visual
saliency score based on the dissimilarity of an image patch to its surroundings. The dissimi-
larity of a pair of patches is determined by comparing their color histograms. Patches which
are highly-dissimilar to their surrounding patches receive a high saliency score. This method
demonstrates good performance and it serves as the basis for our depth-based saliency ap-
proach. Inspired by the findings of Theeuwes et al. [23], we extend the dissimilarity frame-
work to model the joint interaction between layout and shape features obtained from the
depth channel, and the color information.

Hou and Zhang present a saliency method based on spectral analysis [10]. The spec-
tral residual is introduced as the frequency domain equivalent of the spatial saliency map.
Thresholding the resulting saliency map produces a proto-object segmentation of the scene.
More recently, Cheng et al. extend [6] to base the saliency computation on superpixels in-
stead of simple image patches [4]. They also introduce an alternative object segmentation
approach in which a coarse threshold-based segmentation is used to seed an iterative grab
cut. In contrast, we present a segmentation method which integrates saliency measurements
directly within an MRF model at the superpixel level.

2.2 Saliency Computation with Depth

While [15] mentions disparity as a potential cue in saliency computation, very little work
has been done on integrating depth information into a saliency model. Maki et al. use depth
in an attentional framework to help select the nearest out of a number of moving targets
in a tracking application [17, 18]. This is a task-dependent use of depth information and
not a bottom up integration of depth features in the computation of saliency. Ouerhani and
Hiigli extend the approach of Itti et al. from [12] by adding a conspicuity map built directly
from the depth map [20]. This approach treats depth as just another channel, along with
color and other cues. We demonstrate that better performance can be obtained by explicitly
constructing 3D layout and shape features from the depth measurements.

Lang et al. present a depth prior for saliency learned from human gaze information [16].
This saliency prior produces a saliency map that is then either directly added or multiplied
by the saliency results of other methods. A limit to this approach comes from decoupling the
depth features from other saliency cues (i.e. color, intensity, gradient, etc) as complicated
joint interactions are not modeled in the resulting saliency scores.

2.3 Object Segmentation Using Depth

There have been many previous works which exploit simple depth-based cues to segment
generic objects for robot manipulation applications. A representative example is [21], which
fits a plane to a tabletop and then uses connected components on the non-tabletop points to
segment individual objects. These existing methods have two main limitations: they assume
that all salient objects in the scene are associated with a planar support surface, and they
require that the supporting plane be visible. Such methods have been shown to break down
in highly cluttered scenes where not enough of the table surface is visible [22]. Depth-based
saliency followed by object segmentation provides an alternative approach to these methods
which can still make use of planar cues.
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Much work has been done on performing object detection and recognition with depth
information. Representative work can be found in [1, 8, 9]. Recently an object detection
dataset of registered color and depth information was released [13]. This dataset provides
only bounding box annotation for a fixed set of object classes. In contrast our dataset pro-
vides segmentation masks of all objects in the scene.

3 Method

In this section we explain our approach for incorporating depth into the computation of
saliency. We explain our method for depth feature extraction and introduce a saliency model
that combines depth and color features. We then present a novel method for saliency-based
segmentation of generic objects.

3.1 Depth Model for Saliency

We base our approach to saliency on the computation of dissimilarity between a given pixel
and all other locations in the image. This is done by constructing feature vectors at all image
locations and designing a distance measure for comparing feature vectors. We then compute
the saliency at a given pixel location from a ranking of the distances to all other image sites,
based on the comparison of feature vectors.

It follows that we must perform two main tasks in order to incorporate depth into saliency:
(1) design depth-based features which can be extracted at each image site, and (2) determine
how to measure the dissimilarity between two feature vectors at multiple scales. A standard
approach to these tasks is to treat depth as simply another image channel and use existing
methods for feature extraction and distance measurement. Our hypothesis is that depth is
a fundamentally-different source of information, and the correct exploitation of depth will
necessarily change the structure of the saliency computation. Psychophysical experiments
in [23] support this belief, which demonstrate that depth and color cues interact jointly, and
in a complementary manner, to determine saliency.

We exploit two distinct, complementary cues from the depth channel which inform our
saliency computation. First, we exploit the fact that depth encodes object shape. Depth
images tend to be locally smooth at almost all points, except for the boundaries between
objects. The smooth variation in depth corresponds to the shape of scene elements. We
incorporate estimates of the surface normals at each image pixel into our feature vector in
order to identify regions which are salient as a function of their shape or 3D orientation.

In addition to shape, the depth image also encodes information about the scene layout. In
particular, we can use depth to organize the scene into planes. The findings of [23] suggest
that humans use coplanarity to guide their assessment of saliency. We fit planes to the 3D
points of the depth image, allowing us to associate each pixel with the dominant plane that
contains it. In computing the feature distance between two image locations, we penalize
points which lie on different depth planes. This has the effect of incorporating layout into
our saliency computation. We describe this model in more detail in Section 3.2.

3.2 Computational Model

We represent each pixel by the patch surrounding it (we use 5 x 5 patches). Let p; be the
patch representation of pixel i. The saliency value of each pixel i depends upon the similarity
between the colors and surface normals in p; and those of every other patch extracted from
the image. Let deo;(pi, pj) and dyorm(pi, pj) respectively be the Euclidean distance between
vectorized patches of colors (in CIE L *a * b space) and surface normals of p; and p;, nor-
malized to the range [0, 1]. Let dpo(pi, p;) be the 3D Euclidean distance between pixel i and
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pixel j in the scene. Let dyune (i, pj) be a binary measure of whether pixel i and j belong to
the same plane. We define a dissimilarity measure between patches as:

dcal(Pi,Pj) +o- dnorm(piapj) + ﬁ 'dplane(piapj)
1+ Y'dpas(pi7pj)

d(pi,pj) = (1)

Here «, B3, and y are weights which determine the influence of the surface normal, plane,
and euclidean distances with respect to distance in color space. We subsequently use the
distance defined by Equation 1 to compare pixel p; with all other pixels in the image.

To suppress the influence of the many image patches which are distant in feature space,
only the top K most similar patches determine the saliency value at each pixel. By limiting
computation to include only the top K patches, one can interpret dine(pi, p;) in equation
1 as prioritizing patches from the same plane for use in computing the saliency score. The
saliency value of pixel i is defined as:

1 K
Si=1—exp{—2 Y d(pi i)} )
k=1

Patches are compared both with other patches at the same image scale as well as with patches
extracted from the image at other scales (e.g. at 50% and 25% of the current scale). Com-
parison across multiple scales is helpful in suppressing the effects of large uniform regions,
such as the image background, which are more likely to have similar patches at different
scales. In addition, we compute a saliency map, S;, at M different scales (we use 100%, 80%
and 50%) and average the saliency score obtained from each different scale, giving a final

_ M
saliency score for each pixel of S; = ﬁ Yy sn
=1

Figure 2 illustrates the impact of thﬁ normal and plane features on the determination of
saliency. In order to highlight these effects, we compute differences between the saliency
maps produced by different feature combinations. These differences are visualized in Fig-
ure 3. In Figure 3(a) we see that the addition of the depth plane feature substantially increases
the saliency of the light switch in the upper right corner of the image. This can be attributed
to the fact that the light switch is located on a different plane from the other objects with
similar color (the door and window blind). From Figure 3(b), we see that the use of surface
normals increases the saliency score at many parts of the image, particularly around the door
area. We attribute this to the greater variation in surface normal directions on the surface of
the door area, including the door and the blinds, in comparison to the side wall. Figure 3(c)
demonstrates that the combination of depth features significantly amplifies the saliency of
the door and the light switch, which are the key elements in this scene.

(a) Original color (b) Color Alone (c) Color & Planes (d) Color & Nor- (e) Color, Normals,

image mals & Planes
Figure 2: Saliency results computed using different features.

3.3 Segmentation from Saliency

Given a saliency map we wish to determine a pixel level segmentation mask of the salient
objects in the scene. This is commonly done by performing a simple thresholding operation
on the saliency map [4, 6, 10, 11]. This simple procedure produces very rough boundaries
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(a) (Color & planes) minus (b) (Color & normals) mi- (¢c) (Color, normals, &
(color alone) nus (color alone) planes) minus (color alone)
Figure 3: Saliency map differences for the plane and surface normal features.

and is difficult to tune from image to image. Instead, we wish to accumulate and propagate
saliency information across similar pixels to give a more refined result. To this end we con-
struct a Markov Random Field (MRF) model of the image connecting extracted superpixels.
We wish to label each superpixel as either object or background. In order to do this we apply
a unary potential for each superpixel which gives high cost to labeling a superpixel as back-
ground if its average saliency score is high. Similarly we penalize labeling superpixels with
low average saliency as objects. We propagate information between neighboring superpix-
els by applying a smoothness term which penalizes regions of similar color distribution for
having different labels. However, we allow the data term to dominate and do not force like
labeled regions to have similar color distributions.

Our MRF connects neighboring superpixels and produces the following energy for which
we wish to find the minimum cost labeling E = Zg(l,») + Z f(li,1;). Here I; describes the

icl i,jEN

ith superpixel, f(l;,1;) defines the smoothness term between neighboring superpixels, and
g(l;) is the data potential which penalizes high saliency regions when given a background
label. We define this data cost as

(1) = S - |4] if ; has background label
SY =) max(6 — §(1;),0)- || if I; has object label

where S(I;) is the average of all pixel saliency values in /;, |[;] is the number of pixels in /;,
and 0 is a threshold which scales how salient a region must be in order to receive no cost
when assigned an object label.

We define the smoothness cost between superpixel 7 and j as

L- hist(l;,1;) if label(l;) # label(l})
f(livlj) = .
0 otherwise

where L is the average superpixel size in the image and hisz(l;, ;) is the histogram intersec-
tion between the color histograms of /; and /;. Note that we normalize the color histograms
to sum to one for each superpixel in order to control for different superpixel sizes. The su-
perpixel size term is necessary to weight the smoothness term to be of similar magnitude to
the data cost term.

We extract superpixels from the color image using the method presented in [19]. We per-
form the optimization using a binary graph cut as described in [3]. Our experiments demon-
strate the added benefit of our MRF approach over simple thresholding (cf. Section 4.2).

3.4 Surface Normal Computation and Plane Estimation

The depth images contain missing data due to limitations of the sensor. To overcome this is-
sue we apply mode filters to the image as a smoothing operation. These filters produce values
to fill in the missing data, while preserving the known depth values at all other pixel loca-
tions. Additionally, we crop the depth image to remove areas at the border where no depth
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R

(a) Color image (b) [20] (c) [6] (d) [7] (e) [11] (f) Ours
(g) Color image (h) [20] i) [6] G) [7] (k) [11] (1) Ours

Figure 4: Results comparing various saliency methods.

data is present. We compute surface normals at all pixel locations following the “PlanePCA”
procedure explained in [14]. This method makes a locally planar assumption of the 3 x 3
patch centered at a given pixel and computes the normal of this plane as the surface normal
to the point. This produces fairly stable results, but has issues at depth discontinuities oc-
curring at the boundaries between objects. We compute dominant planes in the depth image
using RANSAC plane estimation [5]. Once the best sampled plane is chosen, we refine the
plane estimate with a linear least squares fit using all support points in order to reduce noise
effects from the depth data. After finding the first plane, we remove all support points and
extract the most dominant plane in the remaining set. We continue this iterative process of
adding additional planes until no plane with at least 20,000 support pixels can be found. In
our experiments, this process results in at most 6 planes for a 640 x 480 image.

4 Results

We collected a new dataset of 80 color and depth images using a mobile-manipulator robot
in a real-world home environment. We created pixel-level segmentations of the objects in
all of the images in the dataset. We present qualitative comparisons of our saliency method
to four previous approaches. We provide quantitative evaluation of our saliency maps in the
context of generic object segmentation.

4.1 Qualitative Results

Figure 4 provides a qualitative comparison of our saliency method to the previous methods of
center surround with depth information [20], context-aware saliency [6], graph-based visual
saliency [7] and image signature [11] approaches. In all examples, our depth features pro-
duce much better results than the previous depth based saliency work of [20]. Additionally
we produce results which outperform the state of the art color saliency methods of [6, 7, 11].

Examining the color-based methods, we see they all produce fairly different results. The
image signature method stands out for its much sparser result. When depth information is
incorporated in the center surround method as an additional channel, it tends to over-smooth
the result. For example, it fails to highlight the tissue paper and toothpaste in Figure 4(b). In
contrast, our method is largely succesful in highlighting as salient those regions correspond-
ing to objects in the scene (see Figure 4(b) to 4(f)).

We can see the effects of the different saliency methods by examining the resulting seg-
mentations they produce. In Figure 5 we compare our segmentation results to those produced
using the saliency measure of Goferman et al. [6] which, based on our observations, tends
to produce the best results in comparison to the other baselines. Our saliency method labels
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MREF segmentation results using our saliency method
Figure 5: Comparison of segmentation results for the images presented in the first row. The second
row are the segmentation results produced by running our MRF framework using the context-aware
saliency scores [6]. The third row shows segmentation results for our best performing saliency method.
Regions labeled foreground by the color based context-aware saliency and not by our method are
outlined in red. We outline in green those regions our method detected as foreground which were not
found by the color only method.

more of the objects in the scene as objects while capturing less of the background across
these images. For example, our method detects the second set of light switches in the first
column, while the method without depth cues does not. In the utility closet scene (third
column), our segmentation results in a tighter fit to the objects of interest, and captures less
of the background wall. Importantly, our method detects the second bowl in the scene of
the final column, while the color-based method does not. In the second column, our method
successfully labels the low-profile paper towels on the counter as foreground. This is a par-
ticularly difficult task, as the object depth is quite similar to the counter beneath it. The
same can be said for the papers on the table in the fourth column. Taken collectively, these
results demonstrate that the incorporation of depth cues for shape and layout into saliency
can produce substantial benefits.

4.2 Quantitative Segmentation Results

We now present a quantitative evaluation of the benefit of depth information in saliency com-
putation. Figure 6 shows ROC curves for all competing methods (image signature [11], cen-
ter surround with depth information [20], spectral residual [10], context-aware saliency [6],
depth-extended context-aware saliency, and graph-based visual saliency [7]). In these exper-
iments segmentation is performed by a direct thresholding of the saliency map. Figure 6(a)
summarizes results of three variations of our method. We see that the plane based method
gives the best overall performance. In Figure 6(b), we compare the plane based method from
Figure 6(a) to previously published approaches as well as the depth-extended context-aware
saliency method.

We can draw several insights from Figure 6. Raw depth data does not help much, since
local changes are mostly smooth. This is true for both the center surround and context-aware
saliency methods when depth is added into the model. Normal estimation does increase
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(a) ROC curve for our methods (b) ROC curve for all methods
Figure 6: ROC curves for object segmentation. False Positive Rate vs True Positive Rate
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segmentation performance, since curvature varies much faster than absolute depth in the
scene. However the use of plane information increases performance the most, a finding
reflective of the human attentional study in [23]. Adding surface normal information to
the plane based saliency decreases the performance compared to using planes alone, while
improving slightly above surface normals alone. We believe this is caused by the relatively
high noise present in normal estimation. The RANSAC based plane estimation method is
capable of suppressing this noise by finding dominant planes, while the raw normal estimates
distract from the plane estimates when the two are combined.
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(a) Zoomed in results of segmentation with the (b) Full results for MRF segmentation
MRF model

Figure 7: ROC of object segmentation results with MRF. False Positive Rate vs True Positive Rate.

Figure 7 shows segmentation performance of our proposed MRF model. This MRF
model improves the performance of our method, as well as those of [6] and [20]. However,
our method benefits more by this MRF model and outperforms all others by a larger margin
than before. Note that incorporating the depth map as just another image channel does
not improve the saliency result and may even decrease the performance of the methods (see
center surround+depth and context+depth in Fig. 7). This lends more support to our approach
of using higher level depth features in performing unsupervised object segmentation.

5 Conclusion

We have presented a novel approach to saliency computation using shape and layout features
derived from depth measurements. Specifically, we propose dissimilarity features based on
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modeling the joint interaction between layout and shape features obtained from the depth
channel, and the color information. Moreover we demonstrate that simply treating depth
as an additional channel produces little improvement over purely color based methods. We
compare our approach to standard techniques and show improved performance both qualita-
tively and quantitatively in the context of segmentation. We presented a novel MRF based
object segmentation method based on saliency computation.
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