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Abstract

Visual place recognition methods which use image matching techniques have shown
success in recent years, however their reliance on local features restricts their use to
images which are visually similar and which overlap in viewpoint. We suggest that a se-
mantic approach to the problem would provide a more meaningful relationship between
views of a place and so allow recognition when views are disparate and database cover-
age is sparse. As initial work towards this goal we present a system which uses detected
objects as the basic feature and demonstrate promising ability to recognise places from
arbitrary viewpoints. We build a 2D place model of object positions and extract features
which characterise a pair of models. We then use distributions learned from training ex-
amples to compute the probability that the pair depict the same place and also an estimate
of the relative pose of the cameras. Results on a dataset of 40 urban locations show good
recognition performance and pose estimation, even for highly disparate views.

1 Introduction
Place recognition is the ability of a system to identify its current location with respect to
a set of previously visited places. Vision-based place recognition techniques are becoming
popular due to the cheapness and flexibility of cameras. For vision systems, this involves
determining, given an input image, which other image in a database is most likely to depict
the same physical location in the world.

Consider the top row of images in Figure 1. It is clear that these two images show the
same place, albeit with a small change in viewpoint. Existing work in this area has largely
focussed on situations such as this, in which there is a large amount of overlap between the
views. These systems usually rely on image retrieval-type techniques for comparing places,
such as the extraction of local or global image features, with approaches based on the bag-of-
words representation [25] having shown to be particularly successful. Notably, FAB-MAP
[6] has demonstrated the ability to work on datasets of over 100,000 images in real-time.

Now consider the bottom row of Figure 1. Since the images appear to be quite different,
it is not immediately obvious that they depict the same location. However, humans are able
to use their understanding of the world to look for more subtle clues such as the style of the
area, the objects in the scene, features on the ground, and the geometric arrangement of all
of these. Thus, most people should be able to say that the two images are consistent with
each other, and can there be fairly confident that they represent the same place - even though
there has been a significant change in viewpoint.
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Figure 1: Pairs of input images and the output from our system. Top row: images of a similar
viewpoint; Bottom row: images of disparate viewpoints.

Although humans are capable of recognising places in this way, existing image match-
ing techniques make assumptions about the visual similarity of separate observations of the
same place, making them unsuitable for this type of recognition. The reliance on finding
common local features between the images can make them susceptible to occlusion, lighting
conditions and environmental changes, and most significantly, means that their viewpoints
must have substantial overlap. This may not be a problem if the place database already has
thorough coverage of the area in question, but this is not always practical. We also may not
be able to assume that when we revisit a place we will see it from a similar viewpoint as
before.

Suppose that rather than simply representing a place by the image features which de-
scribe its appearance, we used a higher level representation of the scene. If we were to
model a scene using some understanding of semantic features and their geometric arrange-
ment, we could recognise places from an arbitrary viewpoint, as long as enough information
is visible - closer to the way in which humans appear to interpret a scene. In this paper we
take initial steps towards building such a system, and present results of a place recognition
method which uses detected objects. By estimating the geometry of the scene and extracting
features we can determine the probability that two images depict the same place. We also
gain some semantic understanding of the relationship between the two views by estimating
the position of each object, the ground plane and the relative pose of the cameras, shown
in the final column of Figure 1. Although our method is restricted to scenes which contain
familiar objects, we are not aware of any existing work which performs recognition from
disparate views such as this, so we aim to demonstrate that there is potential for systems
which can recognise places from images with little or no visual overlap.

2 Related Work
Although there has been some successful place recognition work using global features [27],
the majority of recent work has involved the extraction and matching of local image features
such as SIFT [18] or SURF [3]. The bag-of-words model proposed by Sivic and Zisser-
man [25] has been particularly popular [1, 6, 19, 24], and recent work has demonstrated
the real-time recognition of very large databases [7, 17] and systems combined with odom-
etry to represent topological relationships between images [4, 16]. Some works have also
used features associated with 3D information from stereo [5] or laser range data [21] to
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Figure 2: Overview of the primary stages of our system

improve recognition; nonetheless, these still suffer from the limitations of image-matching
approaches.

There is also a growing body of work exploring the interpretation of semantic features in
images and their geometry. This includes semantic segmentation [9], depth estimation from
a single image [13, 23], generation of a "blocks world" model through physical reasoning
[10], estimating planar structure [11, 12], and modelling 3D scenes using familiar objects
[26]. Bao and Savarese [2] present a structure from motion system which, like us, uses the
notion of geometric consistency of detected objects across two views. However they also
rely on local image features which means disparate viewpoints would not work. We take
inspiration from Hoiem et al [14] as we use a similar model of object geometry, but their
goal is to improve object detection.

Perhaps the most similar work to ours is that of Ranganathan and Dellaert [22], who
use objects as a feature in place recognition, but as they also model the positions of local
features in the objects their system does not appear to have any ability to recognise places
from arbitrary viewpoints. They also only demonstrate results over 6 indoor locations.

3 Overview
We have chosen to use objects as the basic feature in our system. They were chosen as a
starting point for a number of reasons: they have clear, distinct classes (e.g. “car”, “traffic
light”) which eases correspondence across widely separated views; we are able to make some
inference about the (relative) size of known objects, and therefore infer their depth; and for
our purposes, most simple objects do not extend arbitrarily, and thus can be treated as point
features in 3D space.

The overall approach we take is to use knowledge about the objects in the scene to gener-
ate a geometric place model, then extract features from a pair of place models, and compute
the probability that the places are the same. Figure 2 illustrates the main stages of our system.
The remainder of this section will briefly overview our method, with the following sections
providing more detail.

The first column in Figure 2 shows a pair of typical input images. We begin by detecting
objects in an image using a small set of pre-trained object classifiers. We used the detector
implemented by Felzenszwalb et al. [8] and classifiers for five classes of common street
object were learned: ‘traffic light”, “round sign”, “bollard”, “small bollard” and “belisha
beacon”.

By assuming that we know the relative world height of each object class, we estimate the
depths of the objects as well as the plane they sit on. Ultimately we generate a model like
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Input image Estimate depth Fit ground plane Generate place model

Figure 3: Illustration of the geometry estimation

that shown in the second column of the figure - essentially a top-down 2-dimensional view
of the scene. This is the place model which we use to perform place recognition.

If the place model is a good approximation of the scene geometry, it should be the case
that when we are given two images of the same place, their models look very similar; indeed,
if we had perfect measurements, they would be related by just a rotation and translation. With
this in mind, we extract a set of featuresF from the place models and compute the probability
p(C|F), where C is the event that the two images depict the same place. The problem is now
treated as a machine learning problem; distributions p(C|Fi) for each feature are estimated
from training data and are used to compute the final probability during testing.

A significant issue to be addressed is the fact that we do not know the correspondence
of objects between images. The problem is compounded by the fact that the set of detected
objects often contains a significant amount of noise - both false positive detections and true
positive detections of objects which are only visible in one view. Indeed, the number of
objects which are common to both views may be smaller than the number of uncommon or
incorrect detections, so existing point correspondence algorithms are not applicable. In addi-
tion, the number of possible correspondences grows very large with the number of detected
objects, meaning that excess noise can generate an intractable number of hypotheses.

We take a relatively simple approach to the correspondence problem. First, we only
consider 5-object correspondences between views. This necessitates the presence of five
objects which are common to both images, but helps robustness to noisy detections. Second,
we only consider the top 10 ranking objects, according to the confidence scores generated
by the object detector, in each image. We find that this limits the number of correspondence
hypotheses to a tractable figure, whilst still generally retaining 5 common objects between
views. We will evaluate p(C|F) for all possible 5-object correspondences and use the highest
hypothesis probability as the probability that the images depict the same place.

4 Geometry Estimation
We use a geometry model inspired in part by the work of Hoiem et al. [14], which assumes
the relative world height of each object class is known. We also assume that we know the
height of the camera from the ground in the same units - like [14], we estimate this a priori
by observing that all of our images are taken at eye level.

Given that for each object i we have the world height Hi, image height hi in pixels, and
the focal length of the camera f in pixels, we can use similar triangles to estimate the depth
of the object di =

f Hi
hi

. The result is shown in the second column of Figure 3.
We now approximate the point in the image at which each object contacts the ground by

taking the point at the base of each bounding box, shown in red in Figure 3. Since we have
an estimate of the depth of each object, these ground points yield a set of 3D points which
represent the base (i.e. ground contact point) of each object, in the camera frame.

Ideally, we would like to estimate the ground plane by fitting a plane to these points,
however some of the points may be erroneous detections. Alternatively, we could estimate a
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different ground plane for each set of 5 objects, which would be consistent with our decision
to use 5-object correspondence hypotheses when comparing places, but having different ob-
ject geometry for each hypothesis would prevent us from precomputing features as described
in the following section. Instead, we compute the ground plane for all possible sets of 5 ob-
jects, and take the average of all planes whose residual is below a threshold. We find that a
fixed threshold determined experimentally is sufficient. The third column of Figure 3 shows
the ground plane estimate. It is more convenient for our purposes to orient the ground plane
flat along the X-Z plane, so we instead treat the camera as being rotated relative to the ground,
rather than the ground being sloped relative to the camera.

Finally, we re-estimate the position of the objects by intersecting the ground ray of each
object with the X-Z (ground) plane. We can now represent each object as a 2D point on the
plane, essentially giving a top-down view of the scene, as in the final column of Figure 3.
This is the place model which we use for comparing places in the following section.

5 Hypothesis scoring
Given a pair of images, we can compute a geometric place model for each as described
above. We can also compute the full set of 5-object correspondence hypotheses between the
views. We now wish to compute the probability of each hypothesis being correct.

Intuitively, if the models do represent the same place, we would expect them to be related
by just a translation and rotation. In reality there is obviously a reasonable amount of error on
the object positions, particularly in the “depth” direction. We require a way of comparing the
models, given a correspondence hypothesis, in a rotation and translation invariant manner.

We approach this by considering pairs of correspondences - that is, a hypothesis (i→
i′, j → j′), where object i in the first image corresponds to object i′ in the second image,
and likewise j and j′, with i 6= j and i′ 6= j′. Since each pair defines a transform between
the coordinate frames of the place models, we can extract features which characterise it in
a rotation invariant manner. Significantly, this approach has a substantial speed advantage:
since the number of objects in each image is quite small (in this our case, no more than 10),
the number of pairs of correspondences is not very large - easily small enough to evaluate
them all. Thus, the amount of computation required for each full correspondence hypothesis
is minimised, as features for the relevant pairs-of-correspondences are precomputed and
looked up in a table.

We extract 3 types of feature from the models for each pair of correspondences which
will be used to compute p(C|F), the probability that some full correspondence hypothesis
is correct. In addition, we use two further scores - the residual on the ground plane estimate
described in Section 4 and the confidence scores given by the object detector.

5.1 Feature Extraction
For this section, we define the following notation. For a given pair of images, assume that
we have the 2D object position vectors pi and qi, which are the positions of the objects in
the first place model, and ri and si which are the objects in the second place model, for the
ith pair of correspondences. See Figure 4 for examples.

Object distance score. (Figure 4(a)). For a true pair-of-correspondence hypothesis, it
should be that the length between the pairs of objects in each image is very similar - i.e, the
magnitude of ‖pi−qi‖−‖ri− si‖ is close to zero. Thus, we use this as a feature and express

the object distance score for pair of correspondences i, as Di =
√∣∣‖pi−qi‖−‖ri− si‖

∣∣.
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Figure 4: Illustrations of some place model measurements used as features.

Rotational transform consensus score. (Figure 4(b)). Each pair of matches defines a
rotational transform between the coordinate frames of the two place models. Let θv be the
anticlockwise angle of 2D directional vector v, relative to some fixed reference direction.
For a particular pair of correspondences, the value θqi−pi − θsi−ri is an approximation of
the rotational relationship between place models. If a hypothesis is correct, it should be the
case that all the pairs of correspondences defined by the hypothesis agree on this value. We
therefore measure the agreement between the relevant pairs by computing a histogram of
estimated rotation. The largest bin value in the histogram is the feature score.

Formally, let the function hist(θ) produce a 10-bin histogram of the input angle, with the
value being counted in two bins to reduce boundary effects. Thus, this will be a vector with
eight zeros and two ones. We can precompute the value of the hist function for each pair
of correspondences. Then, when scoring a full hypothesis, we simply look up the relevant
histograms and sum them, thus giving a histogram of estimated rotation. The feature score
is simply the maximum bin count, given byR= max(∑i hist(θqi−pi −θsi−ri)). A high value
ofR indicates consensus and is correlated with correct hypotheses.

Edge orientation histogram score. Since the majority of our features characterise the
geometry of places, we have also used some appearance information from the input images
in the form of edge orientation histograms. Again, the scores are computed for pairs of
correspondences. As we have estimated the relative pose of the camera and ground plane,
we can rectify the image so that we are looking down at the ground plane. We then look
at the rectangular strip of ground plane which joins two objects in one view (with detected
objects masked out), and compare it with a similar strip in the other view, as shown in Figure
5. We use a thresholded canny edge detector to find edge features and compute a normalised
histogram of their orientations. As shown in the figure, we divide the strips into 3 segments
and compute a histogram for each one, which gives a rough notion of the position of edge
features. These histograms are precomputed for every pair of objects in each view. Then, we
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Figure 5: An example of a matching pair of ground plane strips from different viewpoints,
the extracted edge features, and corresponding edge orientation histograms.



FRAMPTON AND CALWAY: PLACE RECOGNITION FROM DISPARATE VIEWS 7

precompute the Euclidean distance between the histograms for each pair of correspondences.
We also observe that for objects which are very close together, the direction of the vector

between them becomes very unstable, making the histogram distance unreliable. To account
for this we weight the score by the mean of the object vector lengths in each view. Formally,
let the function edge( j,v,u) return the edge orientation histogram for the jth segment of
ground plane strip between 2D vectors v and u. Then, the edge orientation feature score for
a pair of correspondences i is given by Ei = ∑

3
j=1 wi‖edge( j,pi,qi)−edge( j,ri,si)‖ where

wi =
1
2 (‖pi−qi‖+‖ri− si‖) .

Additional scores. As well as extracting the 3 features described, we use two additional
scores. We define G1 as the residual of the ground plane estimate for the set of 5 objects
from the first image, G2 as the residual for the second image, and O as the sum of the object
detection confidence scores for all 10 objects in the hypothesis (5 from the first view, and 5
from the second). These scores are included due to the observation that a correct hypothesis
is likely to have a low ground plane residual and high confidence scores for the objects.

5.2 Probabilistic result
Having extracted the features described above, we wish to compute the probability that a
hypothesis is correct. For simplicity, we assume independence between all feature scores,
yielding a naive Bayes classifer:

p(C|F) = p(C|R)p(C|G1)p(C|G2)p(C|O)
(5

2)

∏
j=1

p(C|D j)p(C|E j) (1)

Note that the product is over every pair of correspondences; since we have 5 correspon-
dences, there are

(5
2

)
= 10 pairs in our system.

We take a machine learning approach to estimate each of the above the p(C|score) terms.
In each case, the distributions for p(score|C) and p(score|¬C) are estimated from training
examples. This necessitates knowledge of C in the training data, so all matching places in
our dataset have been hand-labelled with the correct object correspondence. Then, Bayes’
theorem is used to estimate the value of p(C|score) = p(score|C)

p(score|C)+p(score|¬C) . Note that it does
not make sense to assume a prior for C, the event that we encounter a correct hypothesis, so
the equation is given assuming that p(C) = 0.5.

6 Results
To assess the performance of our system, we collected a dataset of 40 locations, each with
between 2 and 4 images from widely different viewpoints. We then trained the system as
described in Section 5.2. Note that this data is independent from the data used to train the
object classifiers. Since we are simply learning distributions over comparisons of places, not
about the places themselves, we decided to train the dataset on a subset of the test dataset
to maximise use of the data. To verify that the results were not biased, we tried repeatedly
training the system on a random 50% subset of the dataset and running the test again. We
found that the learned probability distributions were very similar each iteration, and that the
recognition performance did not change by more than about 2%.

A place recognition experiment was then performed. Each image from the dataset was
compared against every other image to compute the the posterior probability p(C|F) that
the images depict the same place. Figure 7 illustrates the ranked positions of hypotheses
according to this probability for each test image.

Table 1 states the performance of our system under several conditions. The “grouped”
score is simply the percentage of test images for which an image from the same place was
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Success cases Failure cases

Figure 6: Some examples of our system’s output. In each column, the first two rows are the
input images and the last row is the hypothesis given by our system. In all cases, the first
image is represented by the red camera.

Test image ID

R
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Figure 7: Illustration of the rank of hypotheses for each test image. Coloured squares are
images from the same place as the test image (i.e. correct hypotheses), and their y position
shows their rank. The colours indicate which location the test image belongs to.

chosen as the most likely match, simulating a place recognition scenario in which we have
made a small number of previous observations of each place. It is interesting however to
consider a harder case in which, for each test image, there is only a single matching image
in the database. The “pairwise” score simulates this situation by removing all but one of the
matching images for each test image.

We also observed that some discriminative ability of the system is provided by the dif-
ferent object classes - so a place with objects of class “sign” and “bollard” cannot possibly
match with a place containing only “traffic light” objects. Whilst this is a legitimate place
recognition scenario, we wanted to observe the discriminative ability of the features alone.
Thus, we also tested the system on a “restricted class” subset of the dataset with 30 locations,
all of which contained the same two object classes, meaning that almost every image was
capable of valid object correspondences with every other image. Clearly this is a harder case,
however Table 1 shows that performance was still reasonable.

We have compared our performance against that of the GIST descriptor [20], which at-
tempts capture the general appearance of the scene and therefore does not necessarily require
images with overlapping viewpoints. In this way it seems to be the closest work for recognis-
ing the types of images we are dealing with, although their approach is significantly different
and GIST does not perform well on our dataset.

Table 1: Our system’s place
recognition performance, and a
comparison with GIST

Grouped Pairwise
Restricted class dataset 67.9% 54.5%

Full dataset 73.1% 61.8%

GIST 19.2% 21.4%
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Figure 8: The results
of the human experi-
ment for humans and
our system.
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Figure 6 demonstrates some examples of successful and unsuccessful place recognition.
For display purposes the pose of the cameras is computed using Horn’s absolute orientation
method [15] on the given hypothesis. In general, we found that the system is able to find
a good hypothesis for pairs of matching places - however in cases where it failed, there
was a similar-looking place (at least according to the features we extracted) which caused
confusion. Intuitively, this is not a surprising mode of failure. All but one of our features are
based on the estimated geometry of the scene, and we have only 5 points with a reasonable
amount of error. The error in many cases may be larger than the difference between similar-
looking places, so the system is prone to confusion in these situations.

6.1 Human experiment
As we are not aware of any directly comparable place recognition system, we wished to ob-
tain some kind of benchmark to assess the performance of our method. Thus, we conducted
a reduced test to compare our system against human performance. 30 participants were pre-
sented with 20 images of places, and were asked for each one to choose which of 5 other
images represents the same place in the world. We also asked the participants to estimate the
relative pose of the cameras by choosing one of eight rotational transforms around a circle.
We then tested our system on the same data.

In terms of place recognition ability we found that the average person performed slightly
better than our system (Figure 9(a)), however the results seem to verify that the problem is
not trivial - about a third of participants performed as well or worse than our system. Inter-
estingly however, when the camera pose estimates were compared with an expert-labelled
ground truth, our system made much better estimates than people (Figure 9(b)). This, along
with opinions gathered from participants during the experiment, indicated that humans are
often using other, more specific semantic cues such as markings and structure on the ground
or the style of the area to recognise places, rather than trying to align 3D maps of the scenes.

7 Conclusion
We have presented a system which performs place recognition using objects, and have
demonstrated encouraging results on a dataset where matching images may have completely
different viewpoints of the same scene. The results revealed a moderate amount confusion
between places, which combined with the neccessity of some restrictive, although not unrea-
sonable assumptions mean that the system is not very general and is unlikely to scale well to
larger datasets. Nonetheless, we believe that this work has shown that it is certainly possible
to perform recognition using semantic features when there is no overlap of image features at
all, on a dataset which even some humans find difficult.

The most common failure of our system is when the geometry of a pair of non-matching
places was more similar than the amount of error on the measurements - although, with
only five points and as few as one or two object classes in the scene, this does not seem
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surprising, so the system appears to do a good job with the features we are using. For future
work, motivated by the limitations of geometry and by the human results which showed the
importance of other semantic features, we intend to investigate the use of more appearance-
based features to accompany the edge features which we are already using, particularly those
on the ground, as well as ways of characterising the style or architecture of a place to aid
recognition.
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