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Abstract

We focus on the estimation of radial lens distortion utilizing vanishing points de-
tected in single images. Recent methods for vanishing pointdetection either ignore radial
distortion completely, or assume only weak distortion, which is accounted for after van-
ishing point estimation. Unfortunately, if strong radial distortion is present the effects
are detrimental to the extraction of vanishing points and such algorithms are bound to
fail. To overcome this limitation, we suggest a closed-formsolution for the problem of
simultaneously estimating a single vanishing point and radial distortion from three dis-
torted image lines. By utilizing our solver in a RANSAC-likealgorithm, we arrive at a
unified camera calibration approach, which in addition to stably estimating radial distor-
tion, computes the camera’s focal length if at least two orthogonal vanishing points are
present. Based on extensive experiments we show that our approach presents a significant
contribution to the state-of-the-art in camera self-calibration from single images.

1 Introduction

Radial lens distortion found in real, most notably (cheap) off-the-shelf medium to wide an-
gle optics can be quite severe. This complicates the analysis of digital imagery, as deviations
from the pin-hole camera model are significant. A-priori calibration of lens distortion, pos-
sibly alongside the camera’s other parameters [18], remedies the problem. However, such
techniques are not applicable to zoom lenses and more importantly, require access to the
camera. Other approaches make use of correspondences in multiple views of a moving cam-
era,e.g. by utilizing constraints from epipolar geometry [2, 9, 12]. These methods require
sufficiently overlapping views and suffer from the lack of texture commonly encountered in
indoor environments.

Another class of algorithms focuses on estimating lens distortion from single views,
e.g. by imposing the constraint that straight scene lines have to appear straight in the im-
age [7, 8, 14]. These methods depend on extraction of long, smoothly curved edges and
get thrown off easily if a portion of such curves originates from non-linear scene structures.
For this problem, the use of vanishing points provides a distinct advantage: When a sig-
nificant number of image edges groupsw.r.t. to a common vanishing point, it is far more
likely that they stem from parallel scene lines, than being raised by some arbitrary curved
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Figure 1: Exemplary results: Circular arcs (blue) groupedw.r.t. to a vanishing point, indi-
cated by converging circles (first row). Automatically undistorted images. (second row).

structures. For weakly distorted images this has been considered by Bräuer-Burchardt and
Voss [4]. Similarly, in [10] Grammatikopouloset al. attempt to account for weak radial dis-
tortion in the context of camera calibration from orthogonal vanishing points. They propose
re-detection of straight lines together with a refinement offocal length, radial distortion, and
vanishing points starting from initial vanishing point estimates obtained by a standard line-
based approach. Hugheset al. [11] utilize vanishing points to estimate the strong distortion
effects present in fish-eye lenses. However, their method isdesigned for calibration patterns.

1.1 Contributions

We concern ourselves with the detection of vanishing pointsand concurrent estimation of
radial distortion, using sets of edge segments extracted from a single view. This has been
attempted before [4, 10], but the proposed algorithms share the same deficiencies: a) They
assume weak radial distortion such that a first guess at vanishing point positions can be
made without accounting for distortion. b) When dealing with radial distortion effects in
subsequent refinement stages, the error is quantified in the undistorted image. This creates a
significant bias towards distortion estimates shrinking the undistorted image [8, 15].

We address both limitations utilizing a simple RANSAC strategy for grouping distorted
line segmentsw.r.t. to vanishing points. The main contribution lies in the generation of
RANSAC hypotheses: We suggest a closed form solution for jointly estimating radial distor-
tion and the vanishing point position from a set of three distorted image edges. Furthermore,
the method avoids bias by assessing the consistency of an edge segmentw.r.t. a vanishing
point directly in the distorted image. See Fig.1 for results obtained with our algorithm.

As an extension of the one vanishing point case, we adopt our solution in a more general
RANSAC-based framework, which in addition to estimating radial distortion from three
segments, adds two more segments to compute the focal lengthby identifying up to three
orthogonal vanishing points. In this approach, the assumption of orthogonality is necessary
for focal length computation, but does not affect the estimation of radial distortion. To
summarize, our contributions are:
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• A closed-form solution for estimating a vanishing point andradial distortion from
three distorted image lines together with an efficient consistency measure for grouping
sets of distorted linesw.r.t. their vanishing points.

• The adoption of our solver in a unified and robust camera self-calibration framework
based on RANSAC, which computes radial distortion and focallength, as well as three
orthogonal vanishing points, from a total of five segments.

• Extensive experiments show that the approach is computationally efficient and can
handle significantly distorted images as well as images unaffected by radial distortion.

2 Lens distortion model

For our work, we adopt the so-called division model [3] made popular by Fitzgibbon [9]. In
this model the mapping from a distorted image pointx to the undistorted point̃x is given by

C : x̃ = x/(1+λ r2). (1)

Here,r =
√

x2+ y2 is the distance of the distorted point to the distortion center (the origin of
the coordinate frame), which is typically set to the center of the image [9, 16]. The coefficient
λ controls the degree of distortion: Atλ = 0 no distortion is present, whileλ < 0 andλ > 0
account for barrelling and pincushion distortion respectively. For the rest of the paper, we
assume normalized image coordinates, such that 0≤ r < 1.

Intriguingly, it can be shown [2] that under the division model a straight linel̃ =(l̃1, l̃2, l̃3)T

is distorted into a circle with center(xc,yc) and radiusR given by
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λ
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The circle degenerates to a line for eitherλ = 0 or l̃3 = 0, i.e. l passing through the origin.
In [15], Strand and Hayman utilize this observation to correct radial distortion. They

demonstrate that superior results compared to methods minimizing the error in the undis-
torted image [7] can be achieved by fitting circles to image edges in the distorted image.
Basically, once a circle has been identified in an image, the rightmost term in (2) can be used
to computeλ from the circle’s midpoint and radius. Note however, that this approach crit-
ically depends on long, sufficiently curved edges which may only be found close to image
boundaries. When circles are fit to short and therefore almost straight edges, the estimated
parameters are are known to be unstable [5].

3 Estimating radial distortion from circular arcs

In spirit of Strand and Hayman [15], we will utilize circular arcs extracted from edges as
basic feature for our approach. A short account of the adopted technique is given in3.1.
However, while such features are plentiful in images of man-made environments, one cannot
rely on sufficient length or curvedness for immediate estimation of distortion. In Sec.3.2
we will show that improved results can be achieved by utilizing the assumption of a com-
mon vanishing point. We formulate the simultaneous computation of a vanishing point and
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ñ′

a

ã
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Figure 2: Left: The tangentt to the circular arc (circle with midpointm) transformed into
the undistorted image coincides with the original linel̃ passing through the vanishing point
(Sec.3.2). Right: The consistency of a circular arcw.r.t. to a vanishing point is assessed by
constructing the ideal linẽt′ in the undistorted image and warping it tot′ in the distorted one.
The error is the perpendicular distance from pointat on line t to t′, see Sec.3.3for details.

radial distortion as the estimation of a pencil of circle tangents transformed into the undis-
torted image. The main trick is that we under-parametrize the circles such that enforcing
the constraint of a common vanishing point turns the formulation into a simple generalized
eigenvalue problem. This can be solved in closed form for theminimal number of three
circles required by our method.

3.1 Circular arc detection

For arc segment detection we employ the Canny detector. The resulting edges are split into
circular arcs, similar to typical polygonalization procedures based on the Douglas-Peuker
algorithm. Specifically, the procedure recursively splitsedges into sub-segments until a cir-
cle can be successfully fit,i.e. the maximum deviation of all pixels is smaller than a pre-
defined threshold. For each extracted arc smoothed estimates of the arc’s midpoint and the
tangent at that point are computed from the fitted circle. In preliminary experiments, we
compared the algebraic Taubin circle fit and the fit based on minimizing geometric distance
using Levenberg-Marquardt minimization [5]. The later had no noticeable impact on the
quality of radial distortion estimation and we selected themore efficient Taubin method.

3.2 A tangent-based solver

Suppose we are given a pointx = (x,y)T on a circular arc together with the normal vector
n = (u,v)T at that point, obtained with the method from Sec.3.1. If we undistortx and map
n accordingly to its undistorted imagẽn, the line t̃ parametrized by thẽx and ñ coincides
with the linel̃ generating the circle. See Fig.2(left) for an illustration of this concept.

From elementary differential geometry we know that for a differentiable transformation
of a curve, the normals of the curve are mapped to the normals of the curve’s image by the
transposed inverse of the Jacobian of that transformation.In our problemx is transformed
into the undistorted point̃x by C (1), for which the Jacobian is

JC =
1

(1+λ r2)
2

(

1+λ r2−2λ x2 −2λ xy
−2λ xy 1+λ r2−2λ y2

)

. (3)



WILDENAUER, MICUSIK: RADIAL DISTORTION FROM A SINGLE VANISHING POINT 5

Note thatJC = J
T

C
and we can write the normal vectorñ at the undistorted point̃x as

ñ = J
−1
C

n =
1+λ r2

1−λ r2

(

u+λ r2u+2λ vxy−2λ uy2

v+λ r2v+2λ uxy−2λ vx2

)

. (4)

Using (1) and (4), the undistorted tangent linet̃ = (t̃1, t̃2, t̃3)T passing through̃x with normal
ñ is given by

t̃ =
(

ñ
−ñTx̃

)

=

(

ñ
−ñTx 1

1+λ r2

)

=
1+λ r2

1−λ r2




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−ux− vy



 . (5)

We may drop the common scale factor and substituter2 = x2 + y2. Then, rearranging of
terms gives the desired parametrization of the undistortedtangent line:

t̃ =





u
v

−ux− vy



+λ





ux2+2vxy− uy2

vy2+2uxy− vx2

0



 . (6)

Recall that here the only unknown isλ . The transformed tangentt̃ has to pass through
the undistorted vanishing pointṽ = (ṽ1, ṽ2, ṽ3)

T so thatt̃Tṽ = 0. Stacking the equations
t̃Ti ṽi = 0, i = 1,2,3 of three tangent lines, we obtain the generalized eigenvalue problem

(D+λE) ṽ =









d1 d2 d3

d4 d5 d6

d7 d8 d9



+λ





e1 e2 0
e3 e4 0
e5 e6 0







 ṽ = 0, (7)

whereD,E are the so called design matrices. Letting det(D+λE) = 0 and rewriting, it can
be shown that the characteristic polynomial is a simple quadratic of the form

λ 2c2+λ c1+ c0 = 0. (8)

Solving forλ gives at most two real rootsλ1,2. Due to the underparametrization of the in-
volved circles both solutions are geometrically correct, representing two different triplets of
circles meeting in a common vanishing point in the undistorted image. Onceλ is computed,
we plug it back into (6) to obtain the three undistorted lines from which intersecting any two
gives the vanishing point.

At this point, it is convenient to discuss the cases when our solver fails to give a solution.
We identified three critical cases, which can be easily derived from equations (4) and (6):

• Three tangent lines passing through the distortion center:For any line passing through
the distortion center, the orientation of the normalñ is not affected by changingλ .
Consequently, the tangent lines are not altered and the distortion cannot be estimated.

• Three parallel tangent lines with normals (at the point of tangencyx) pointing towards
the distortion center: Again, the normal vectors are only scaled by radial distortion,
such that the tangent lines will only be shifted, but stay parallel for changingλ .

• Three tangent lines lie on the same circle: In that caseλ is still computable as the
trivial solution makingṽ = 0, i.e. theλ where all three undistorted tangent lines are
equivalent up to scale, such that the intersection point is undefined.
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Figure 3: Synthetic data results: The ordinate shows the fraction of successful trials (relative
error inλ smaller than 5%) versus length of circular arcs on the abscissa. The solid red line
denotes our method, the dashed blue line stands for the best-of-three circle fit.

3.3 Assessing the consistency of circular arcs

In this section we will consider a method to measure the consistency of arc segmentsw.r.t. a
vanishing point̃v for a givenλ . To avoid bias in distortion estimation (Sec.1.1) the error will
be measured in the original image, as this is where the uncertainty originates. Specifically,
we asses the error utilizing the same representation as for computing the vanishing point. For
the arc midpointx its undistorted imagẽx is obtained by (1). Then we compute the normal
ñ′ of the ideal linẽt′ connecting̃v andx̃, and use relation (4) to find its image

n′ = JCñ′ = JC

(

ṽ3
y

1+λ r2 − ṽ2

ṽ1− ṽ3
x

1+λ r2

)

(9)

in the distorted domain. We define the consistency of a circular arcs w.r.t. ṽ as

dist(s, ṽ,λ ) =
ls
2

sin∠(n,n′), (10)

wherels is the arc’s length in pixels. The weighting factorls represents a means of allowing
less angular deviation of the normals for longer (presumably more accurate) arcs. Another
explanation is that (10) is the perpendicular distance of the image of the ideal tangent line
t′ (with normaln′) to the pointat on t lying ls/2 pixels away fromx, see Fig.2(right). For
λ = 0, this corresponds to the line segment-based consistency employed in [17].

We may note that the proposed measure is not unambiguous. However, this caused
no problems during all our tests, suggesting that the accidental alignment of a circle not
compatible withṽ through the same pointx with identical normaln, is highly unlikely.
Besides, a simple but slightly more costly option without the ambiguity is to distort the ideal
line t̃′ into a circle passing throughx using (2) and then evaluate the geometric error of
two additional points on the arc. In preliminary experiments we compared both options, but
encountered no significant differences.

3.4 Testing the solver on synthetic data

To get an idea about the behaviour of our minimal solver undernoisy conditions, we simu-
lated the output of the circle detector described in Sec.3.1. In a 640×480 image circular
arcs were created by sampling equally spaced points along circles (compatible with a van-
ishing point), such that their number approximated the given arc length. Furthermore, the
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point locations were subjected to additive, zero mean Gaussian noise. To each arc, a circle
was fit and estimates for the arc’s midpoint and associated tangent were extracted.

In a Monte-carlo experiment, we repeatedly (10000 times) created triplets of equal length
arcs and computed individual estimates ofλ from each circle fit (see Sec.2), as well as by
our method. For the three circle fits, theλ closest to the ground truth value was retained. Our
solver gives up to two solutions per triplet, of which we selected the bestλ . For each trial,
the number of successes (relative deviation from ground truth λ below 5%) was recorded.
The experiment was conducted for noise levels in the range of0.2< σ < 1 and arc lengths
increasing from 20 to 260 pixels. Due to the lack of space, we only give a representative
example of the outcome. Fig.3 illustrates the results for three values ofλ at a noise level of
σ = 0.5. As can be seen, our method drastically improves the quality of the estimation for
short arcs, regardless of the distortion being moderate (λ =−0.1), or severe (λ =−0.5).

4 RANSAC

So far, we have gathered all ingredients for a straight-forward implementation of a RANSAC-
based method to estimate distortion from a single vanishingpoint. In Fig.1 typical results
obtained with this algorithm are depicted. As one can see, even images of natural scenes may
be used to compute visually pleasing results. Unfortunately, many images have more than
one vanishing point and if the dominant one is close to the image center, radial distortion
cannot by reliably estimated. The solution to this problem is largely application dependent,
and can be attacked by using several vanishing points [4], or by searching for a specific
vanishing point,e.g. the vertical one [1, 13].

Recently, Wildenauer and Hanbury [17] presented an algorithm for computing three or-
thogonal vanishing points and the camera’s focal length by using sets of four image lines.
Their method fixes the principal point in the image center andcomputes a vanishing point
from two lines. Two more vanishing points and focal length are then estimated from the first
vanishing point and the remaining lines. This approach can be easily extended to also deal
with radial distortion: One needs to do only marginally morethan replacing the computation
of the first vanishing point with our solver.

In the following, we give the specifics of the resulting RANSAC implementation: A
minimal sample set (MSS) of 5 tangents is drawn, of which 3 are taken to computeλ and
the undistorted vanishing pointṽ1. Then, the 2 remaining tangents are undistorted and fed,
together withṽ1, into the line-based solver [17]. This adds the estimate of the focal length
f and two more undistorted vanishing points to the RANSAC hypothesisH= {λ , f , ṽ1,2,3}.
Each tangent triplet generates up to 2 solutions forλ . And, for eachλ the line-based solver
outputs up to 3 focal length estimates. Since there are 10 combinations of drawing 3 tangents
from 5, a maximum of 60= 10×2×3 hypotheses has to be evaluated for each MSS.

In the evaluation step, the cardinality of the consensus setof a hypothesisH is com-
puted. Here, a circular arc is classified as inlierw.r.t. the hypothesisH, if it has an error
dist(s, ṽi,λ ) (see Sec.3.3) smaller than a predefined thresholdθ for any of the three vanish-
ing pointsṽ1,2,3. RANSAC iterates untilkdata hypotheses have been evaluated and reports
the hypothesis with the largest consensus set.

The advantage of this scheme is two-fold: (a) By using more vanishing points the algo-
rithm covers a larger portion of the data and thereby stabilizes the selection of a vanishing
point for radial distortion estimation. (b) If orthogonal vanishing points are present, we get
an estimate of the focal length for free. This, however, is not critical for distortion estimation.
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Figure 4: Top row: Cumulative histograms of relative focal length and radial distortion error
for our data set. The ordinate shows the fraction of trials with error less than the respective
value on the abscissa. Bottom row: Distribution of estimated distortion coefficients (left)
and cumulative histogram of relative focal length error forYUD (right).

After the RANSAC stage, we conduct an additional refinement of estimates by simul-
taneous non-linear optimization of radial distortion, focal length, and vanishing point posi-
tions. For this we adopt the Maximum Likelihood Estimator suggested in [17] by simply
including the estimation ofλ and our consistency measure. For the rest of the paper, we
denote our RANSAC only implementation asR5CA and the version with refinement as
R5CA+MLE .

5 Experimental results

For tests on real data we used a Canon EOS 500D mounting a Walimex Pro 8mm fish-
Eye lens with≈ 170◦ horizontal field of view. The acquired images were downscaled to
a resolution of 1188× 792 from which a 60% cutout was retained. We pre-calibrated the
camera with distortion center and principal point fixed at the center of the image, resulting
in a focal length offgt = 446 pixels and radial distortionλgt =−0.295.

We acquired a set of 102 images showing mainly street and indoor views of urban en-
vironments. For an evaluation ofR5CA andR5CA+MLE we assessed the relative error in
radial distortion and focal length estimatesw.r.t. the ground truth. In addition, we undistorted
the images using the ground truthλgt and computed focal length estimates utilizing the van-
ishing point detectorR4L+MLE proposed in [17]. In all tests, the number of iterations was
kdata = 4000 and the inlier threshold was set toθ = 0.5 pixel. For each image, the algorithms
were run 100 times and we report the cumulative results in Fig. 4, top row.
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Figure 5: Exemplary results: Circular arcs (black) groupedw.r.t. three vanishing points,
indicated by converging (red, green, blue) circles together with obtained undistorted images.

As one can see, the refinement gives a moderate improvement over the pure RANSAC
method.R5CA+MLE obtained a relative error in radial distortion estimation of less than 5%
in more than 75% of trials. Unsurprisingly, in terms of focallength estimationR4L+MLE
works slightly better than our approach: It operates on perfectly undistorted images and has
one degree of freedom less to deal with, both during feature extraction and in the detection
stage. However, compared toR4L+MLE ’s 92%R5CA+MLE still attains 87% successful
calibrations with a relative focal length error of less than5%.

Exemplary results of our algorithm are depicted in Fig.5. The left columns show suc-
cessful runs, while the rightmost column illustrates a typical failure mode. Due to the low
resolution no arcs were extracted from the building face andthe stack of wood distracted the
computation of orthogonal vanishing points. Thus, radial distortion was severely underesti-
mated and the focal length computation returned a bogus result.

In a second experimental run, we show that our algorithms caneasily deal with data
showing negligible radial distortion by tests on the well established York Urban Database
(YUD) [6]. Results for focal length, together with a plot of the distribution of the estimated
λ values, are shown in Fig.4, bottom row.R5CA+MLE is almost as good asR4L+MLE
which is among the best performing algorithms on YUD. As one can see, the estimatedλ ’s
huddle tightly around to a peak at aboutλ =−0.02. Indeed, a visual inspection showed the
presence of slight barrel distortion for which the estimated value seems to be reasonable.

Our methods were implemented in MATLAB, withR5CA andR5CA+MLE being done
in C++. On a Core i7 CPU, for an average of 350 arcs per image of our data set,R5CA and
R5CA+MLE took 40 ms and 62ms respectively.

6 Conclusion

This paper has extended the state-of-the-art in camera self-calibration from vanishing points
by integrating estimation of radial distortion, focal length, and vanishing point positions in
one algorithmic step. The main contribution is a closed-form solution for direct estimation of
radial distortion and a vanishing point from three circulararcs, extracted from image edges.
Based on this, we devised an efficient RANSAC approach, which, by use of two more arcs,
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is able to accurately estimate radial distortion, focal length, and three orthogonal vanishing
points. Extensive experiments on real data have demonstrated the validity of the method.

An important insight is that (under mild assumptions) it is possible to directly estimate
vanishing points in images with strong radial distortion with only little more effort than in
the standard, undistorted case. Furthermore, our algorithm may be used to detect vanishing
points in images unaffected by radial distortion without the danger of overfitting.
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