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Abstract

The lateral cephalogram is a commonly used medium to acpatrent-specific mor-
phology for diagnose and treatment planning in clinicaltgéry. The robust anatomical
structure detection and accurate annotation remain ctugifig considering the personal
skeletal variations and image blurs caused by device-Bpgedjection magnification,
together with structure overlapping in the lateral ceppams. We propose a novel
cephalogram sketcher system, where the contour extrastianatomical structures is
formulated as a cross-modal morphology transfer from eginhage patches to arbi-
trary curves. Specifically, the image patches of structofesterest are located by a
hierarchical pictorial model. The automatic contour sketcconverts the image patch
to a morphable boundary curve via a bimodal deep Boltzmarchime. The deep ma-
chine learns a joint representation of patch textures antbaos, and forms a path from
one modality (patches) to the other (contours). Thus, tkeé&hler can infer the contours
by alternating Gibbs sampling along the path in a mannerlaino the data comple-
tion. The proposed method is robust not only to structureaiimn, but also tends to
produce accurate structure shapes and landmarks everrip Bluay images. The ex-
periments performed on clinically captured cephalograemahstrate the effectiveness
of our method.

1 Introduction

Lateral cephalogram X-ray (LCX) images are essential teigepatient-specific morpho-
logical information of anatomical structures, such ashteetd craniofacial skeletons. The
manual annotation of the anatomical structures requiregtactitioner’'s experiences. The
probably involved errors come from annotation variancegifidérent practitioners and the
device-specific distortions due to radiographic film magatibn rates. Moreover, the LCX
images can be blurry due to the overlapping of the left arftt+&ided craniofacial structures.
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Figure 1: Flowchart of our cephalogram sketcher system.

The automatic annotation of anatomical structures in degihams has been performed
in the biomedical engineering for nearly twenty years. Fr®80s, the knowledge-based
methods 8, 22] and the neural networks, e.g. pulse coupled neural nesjaft and cellu-
lar neural networksd, 15], have been used in automatic annotation of cephalograms- C
sidering that most salient markers are on the boundary gégexd structures in LCX im-
ages, various image filters including the canny filt&& pnd mathematical morphological
operators?, 10|, were introduced to the cephalogram analysis. The shagp@ppearance-
model-based methods, e.g. the active shape model (AS\NnQ active appearance model
(AAM) [ 5] have been proved to be efficient and robust in facial feaguteaction. The AAM
and ASM have also been applied to the LCX imad& P9]. Recently, the transfer learning
technique was employed to get marker definitions from alreswhotated images instead of
starting from scratchZ7]. The existed work shows a nice performance on well-capture
LCX images, where projected skeletal structures have tleandaries. However, inherent
blurs due to structure overlappings are unavoidable in tieeshot LCX images, and often
blemish the feature extraction. Moreover, most systemgluarhdle a portion of salient cran-
iofacial landmark setd, 13, 15]. Although model-based methods can produce a full set of
markers 3, 29, the pattern fitting can fail to converge in blurry imagdssichallenging to
automatically annotate anatomical structures with higélifig/in LCX images.

In this work, we propose a novel cephalogram sketcher syateshown in Fig.1 for
the automatic annotation of anatomical structures, eafpedor the blemished images due
to structure overlappings and device-specific distortauréng projection. Firstly, we intro-
duce an hierarchical extension of a pictorial model to detaatomical structures. Second-
ly, the bimodal deep Boltzmann machine is employed to skétetstructure contours. The
deep machine tends to find a compact representation of @temry, and the joint hidden
layer can accommodate intrinsic structures from both nitesl Via the joint layer, a path
between two modalities is established and the morpholotgy i be transferred. Specif-
ically, the contour sketcher takes advantages of the pa#ixttact the contour definitions
from the patch textures by alternating Gibbs sampling. &ntthining process, the data of
both modalities are present to learn a joint representaliothe sketching process, the con-
tours are absent, and the inference can be seen as the domplethe missing data. To
summarize, the contributions of this paper are:

e An application of the bimodal DBM to contour sketching anadenarking of anatom-
ical structures in LCX images.

e An hierarchical extension of the pictorial model to detaeniofacial skeletal struc-
tures.

e A joint representation learning for dense textures of stnecpatches together with
the sparse and arbitrary contours.
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2 Redated Work

Deep learning. The deep learning draws great interests in recent years.elEneentary
concepts and reviews can be foundin4]. The deep learning provides a robust approacl
to find a compact representation of observed data. In thexsémork of deep learningl[l],
Hintonet al. used the stacking of several restricted Boltzmann mas{iRBM) to learn the
low-dimensional codes of face and digit imagéd][ The deep learning has been widely
used in the generative shape modeliig]2], the discriminative image classificatioA(],
and the acoustic modeling for phone recognitib [

In the deep structure, the hidden layer of one RBM serves e®liservation of the
higher RBM. However, the deep structure learnt layer-lytand followed by fine-tuning
is different from the deep Boltzmann machir#{], where all the hidden layers are solved
together with an undirected path between neighboring fay€ompared to a single layer
of stochastic hidden units in the RBM and the deep energy madhd], the computation
of conditional posterior over multiple hidden layers is erpive and intractablel], 24].
The contrastive wake sleep algorithm was used to learn pheiltiidden layers of a deep
belief network (DBN) [L1]. An approximate inference was proposed to train DB [
efficiently, where the mean-fields techniques were used tomiie the KL-divergence of
the approximated posteriors. The shape Boltzmann machjrsapdivided the visible and
the first hidden layers with overlappings for the purposefiidient parameter learning.
Multimodal deep learning. The deep learning has been applied in multimodal learning ur
der an assumption that different modalities of the sameetustshare a similar representa-
tion layer. The multimodal learning has very tantalizinggerties that the missing modality
can be filled in given the observed one. Even when some datadre modality is absent,
the deep structure can still learn the joint representasfamulti-modalities. Ngiaret al.
[19) investigated the correlations between the audio and Vata by a shared hidden layer.
All connections in the multimodal DBN were directional, amg8hared representation layer
connected with the hidden layers of the audio and visual fhiteeta Srivastavaet al. [26]
proposed the multimodal DBM for the text-image retrievalnfrunimodal and multimodal
queries, which combined the text- and image-specific DBM&fint representation. The
mean-field inference together with an MCMC-based stoahagtproximation was used to
estimate the model’s stochastic parameters. The undir&BM is more powerful than
DBN considering the bi-way sampling during the learninggess which can make use of
both modalities for an optimal parameter selection. etial. [16] employed the multimodal
DBN to infer binary label maps from components patches ferghrpose of facial feature
segmentations. Different from the close regular regionfaaial components parsing, the
shapes of anatomical structures in LCX images are arbitmadyoften with open contours.
For instance, the contour of the lower brink of the craniumitva is complicated (see re-
gion 9 in Fig. 2). The binary maps inl[6] can be no longer used to locate the anatomica
structures and landmarks. In our work, we employ the panacr@irves to represent shapes
of anatomical structures. The bimodal DBM is employed to finpbint hidden layer of
observed textures of image patches together with the spanteur curves.

3 Anatomical Structure Detection

The cephalogram is an X-ray projection of the patient’s hddte image can be parsed in-
to a set of anatomical structures. The spatial configuratadranatomical structures vary
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among individuals considering skeletal morphologies,dhgiaes, and subtle head move-
ments during image capturing. As shown in Fg(a)(b), the set of anatomical structures
of interest is denoted &= {s|i = 1, ...,10} including nasion orbitale, upper incisor and
nasal spingelower incisor and mentgrupper molar lower molar, porion, Pt, curve of sella
and basionandmandible The patches related to anatomical structures are repegsby
positions and sizes of the bounding boxes, and (x*"°, i, h;) with box anchor poink?™°.
The predefined width and height are denotediaandh; respectively.

The structure detection can be performed by a pictorial ihpgdewhich is under an
assumption that all parts are nearly conditional independ&en their neighbors. Thus,
the likelihood probability of the holistic shape can berstied by a product of local ones.
However, considering the structure definition as shown @ B{(a), most structures in L-
CX images are overlapping, and some structures are evelytiiside the others. For
instance, the second and the eighth structures are insdstriicture ofmandible There
is an ad-hoc hierarchical architecture as shown in B{g). Two kinds of correlations ex-
ist in the hierarchical architecture, the intra- and inggfer correlations denoted &g and
C: respectively. As illustrated in Fig2(c), Cq = UiD:’Olciyi are structure correlations in-
side the same laydr, andC; = UiDz’ozci,iJrl related to correlations between layers, where
o ={<s,sj>|s €L,sj € L }. Dis the number of layers in the hierarchical architecture,
and set at 3 in our experiments. The edge set in the graph idetbasC = C4UGC;.

Given a cephalograri the structure definitio, and the paramete@ = (©q,©;) with
respect to the intra- and inter-layer correlations, thegras probability distribution accord-
ing to the Bayes rule is defined &SI,0) O P(1|S,©)P(S©), whereP(S|©) is a shape
prior distribution. P(1|S ©) is the image likelihood given the hierarchical architeetand
the model parameters. The likelihood can be factorized as@upt of likelihoods of local
structures. In this work, the logarithm of the likelihoodésvritten as a combination of those
related to the inter- and intra-layers (with partition ftinns removed for clarity).

InP(1|S,0q,0r) = Z y Ing(s)+
#€L|
D-2 1)
s{ 3 Ine(8,5M6r) + )3 Ing (s, 5O}

< i 1 f7
1=0 <o gt>ec <gtlst>ecy

¢(s) is potential of local structures computed based on the awWpSVM classifiers as

in [21], and @(s) = (1+exp(Aifi(s) +Bi))~1, where f; is the output of the linear SVM
classifier for theyy, kind of structures;. We employ the HOG to describe the texture feature
of local patches. The image patch is subdivided in to8cells, and neighboring:2 2 cells
are blocked. The histogram after gradient vector votinglmmeach cell is normalized by its
surrounding four blocks containing this cell. Here the bimiber is set at 9, and each cell is
represented by a 36-dimensional vector. A linear SVM isadifor each kind of structures
respectively, where the parameteksandB;, are predefined.

The pairwise potentia$ (s, sj|®;j) accounts for the correlations among neighboring
structures. We consider two kinds of relationships, théadised;; betweens ands;, and
the angle6; defined by the line segment connecting the centers of twetsires and the
horizontal axis as shown in Fig(a).

¢(s,8il6ij) = N (dij, 6 | pij, Zij ) - 2

Given the training data, the Gaussian distribution pararsgiuij, Zij ), can be obtained.
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Figure 2: The illustration of anatomical structures (a) Emtimarks definitions (b). (c)The
hierarchical architecture of ten anatomical structures.

The hierarchical pictorial model can locate anatomicalcitires and result to image patches
containing structures by maximizing the likelihood (Eq.

4 Contour Sketcher

The contour-sketcher based on the bimodal deep learningpfmoped for accurate struc-
ture contours and landmarks. The multimodal deep Boltznmachine P6] is employed
to build a joint representation of the image patch (one nitydand the corresponding con-
tours (the other modality). In online sketching process,uhknown contours of the input
patches are absent, and can be predicted by Gibbs samplithg tiidden modalities from
the conditional distributions.

The contourg of the anatomical structures are discretized into a set @ftpoand
t = (X1,Y1,%2,¥2, ..., Xn,¥n), Wheren is the number of points sampled on structures con
tours. The point sets of contours are predefined considé¢hegizes and shapes of dif-
ferent anatomical structures. The anchor potfit= (37, /n,5_;yi/n) . The contours
are aligned accordingly to the anchor point andt —t&"q [1xn- All the contour anchors are
moved to the origin. The anchor point together with the aijoontourgta"® t) is used to
represent the contour shapes of anatomical structures.

4.1 Deep Learning

When given multimodal data, the deep architecture can lajibéht representation by virtue
of hidden layers from each modality. The shared attributes lze transferred from one
modality to the other via the joint layer. There are symneetly coupled stochastic units
in DBM as a stacking of RBMs. Considering the undirected RBMere is a complete
path from one modality to the other. Specifically, the obsdrdata of one modality take
a role in training the parameters related to layers of therotmodality, which is the main
difference from the multimodal DBN2f]. As shown in Fig. 3, one four-layer network is
used to model the correlations between image patches atmle@hapes. The bottom layers

(Vim, h,(%), ceny h#f’l) |Im= p,t) are related to the image patches and contour shapes regpgcti
whereK is the number of hidden layers and set at 3 in our experimérits.top oneh()
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Figure 3: The training (a) and testing (b) of bimodal deeptBoann machine for contour
sketching.

is the joint hidden layer connecting both modalities. In mark, two kinds of RBMs, the
Gaussian-RBM (for visible-hidden layers) and Bernulli{®Efor hidden-hidden layers),
are used to build the deep architecture. The joint enerdi@ssible and hidden units in
Gaussian-RBM and Bernulli-RBM are defined as follows:

Eg(v,h |9 ) = /20 Zaj J ZZV. i ] Y and

Nh,| Nhi N1

Eb(h( |+1|3 Za'h Z |+1h(l+1 Z Z hW'“h'”

whereN, andNy, are the number of units in the visible and hidden layers. Tdrameters
9 = (W, g, a, b) include the mapping matri/ between adjacent layers and biaseand

b, within each layers. In our experiments, all input variatdee normalized and the variance
o of the Gaussian distribution is set at 1. Given two modaljtiee patcheg, and the shape
contoursy, the joint distribution

P(Vp,[F) = > exp(—Ej)-
i 1, o .
exp(—E v,h(l) —...—E h(Kfz),h(Kfl) .
Mg, Zgen (0T lnt) =R (WT50E)))

The partition functions are removed for clarity. The tepis the energy between the
joint hidden laye(®) and the upper hidden layers with respect to the patch andaont
modalities,h(pKfl) andht(Kfl), and

Nhk Nik-1 K1) Nik -1 Nnk <Dy,

Sy [y A T W )@
m=pit ]

It is intractable to learn the parameters by maximizing theva likelihood. Alternatively,

the problem can be solved by variational approximationnaples, mean-fields, to minimize

the KL-divergence between the approximated and the trugeposs p(h|vp, ) [26]. The

model parameters are initialized by learning the layemrewtscking of RBMs.
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For the purpose of contour sketching, the conditional poditya p(v|vp, ) needs to
be solved. In DBM, when given the observed modahty, the missing modality; can
be generated by alternating Gibbs sampling. Specificgllgerves as input, while all the
hidden units are initialized randomly (e.g. set at zerosinaase). The contours are absent
from input, and can be generated when go through the joiet$diyom the patch machine to
the contour machine. In order to decide when to stop thetiterave measure a score of the
contour predication by the distance between the input inpagehes and the reconstructed.

P(vt|vp,8) O exp(f va — yfodel

). (5)

Wherevgmde' is the reconstructed image patch features, i.e. the HO®drens in our
system, and/p the input. The inference is performed under an assumptianttie more
similar the estimated patches textures to the input, theemeasonable contours resulted.

4.2 Structurelnference: Positionsand Contours

In order to acquire the positions and contours of anatorsicattures, we employ a greedy
searching technique as summarized in Algorithrifo begin with, the positions of all struc-
tures are initialized by the mean values of the Gaussianklisons of the inter- and intra-
layer correlations (Eg2). And then, for each structure, the candidate positionk Wigh
classifier scores within the variances of the Gaussianldision (Eq.2) are explored, while
the shape parameters of all other structures are held fixad.ldg-likelihood (Eq.1) is
computed as the detection score. The conditional prolyabilithe sketcher (Edb) is com-
puted as the sketching scores. The shape and contour eariatth the high detection and
sketching scores are assigned to the current structurentiddlr structures are processed in
the same way. The iterative process continues until the awadiscores of all anatomical
structures are lower than the predefined threshatd the iteration number is large enough.

Algorithm 1 LCX-Image-Sketcher
Input: LCXimages, score thresholy, anditer_MAX;
Output:  Contours and landmarks of anatomical structures;
1: Initialize all structure positions by mean values of theretation distribution (Eq2);
2: Evaluate individual structure classifiers by the linear S{®éction 3);
3: Iter_num=0;
4: whilelter_nunx Iter_ MAX do
5
6

for Each kind of anatomical structurds
Explore candidate locations with high classifier scoreshiwitcorrelation variances of
N (dij,6)) (Eq.2);

7: Compute detection scores as Hg.
8: Compute sketching score as Exj.
9: Assign shape and contour variables with high detection &ettking scoresX n) to the
current structure;
10:  endfor

11: end while
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Table 1: The contours errors (Mjrand landmarks errors (mm) of our methods compared
with the AAM, the extended ASM (EASM), and the multimodal DEMDBN).

Contouf sl [s2 [s3 [s4 [s5 [s6 [s7 [s8B [s9 [s10 | avg. ]
Ours 253|343 |306| 179 | 37.7 | 49.7 | 281 | 26.7 | 340 | 48.4| 333
AAM 37.1| 41.7| 32.7| 31.5| 52.6| 57.2| 59.5| 35.7| 44.4| 44.2 | 43.7
EASM | 49.9| 37.0| 36.0| 93.7| 57.3| 69.9| 64.0| 36.3| 35.2| 53.5| 53.3
MDBN | 72.5| n/a | 57.2| 104 | 91.5| 105 | 51.2| 60.0| n/a | nfa | 77.5
Marker| Se [ Or [N [Ba [Cd |[PNS|Ls [Li |Me [Go |avg. |
Ours | 0.345 1.04| 0.315 0.373 1.16 | 0.670 0.936 1.05 | 1.13 | 0.655 0.768
AAM 0.806 2.10| 1.16| 0.81% 1.24| 1.93| 1.05| 1.61| 1.96| 0.900 1.36
EASM | 0.652 0.973 1.68| 1.42| 1.55| 1.31| 1.79| 1.36| 1.24| 1.73| 1.37
MDBN | nfa | n/fa | 2.70| n/a | nla | 2.11| 2.67| 1.27| n/a | n/la | 2.18

5 Experiments

Data Set. The data set includes 724 LCX images captured in the climeatal hospital.
The resolution of digitalized LCX images is 72000. In our system, 60% images are used
as the training data, and the remaining for testing. Thaitrgidata are manually annotated
by two practitioners for bounding boxes and contours of theal anatomical structures.
The bounding boxes are used to train the structure dete@ondsthe contour shapes are
used to learn the sketcher. There exist blurs in most imafjgsealata set due to structure
overlappings and sometimes subtle movements during éagtur

Methods. We compare our sketcher method with the mainstream tecésigucraniofa-
cial components detection and feature extraction, inolgidhose using the AAMY], the
extended ASM 17], and the multimodal DBN16].

5.1 Detection

Ten kinds of structures are considered in our experiment& ahnotated bounding boxes
in the training LCX images are used to learn the hierarchg@zbrial model. The structure
detection results are shown in the first row in Fga). The location errog is measured as a
ratio of anchor point difference between the ground s and the automatically detected

X2M¢ to the size of bounding boxe‘,’i = Hx;”‘gcT —x?”CH/\/Wihi. The confusion matrix of

location errors of ten anatomical structures is shown in Figb). The average error is
7.46e-2.

5.2 Sketcher

The bimodal DBM is trained with respect to each kind of anatadrstructures. When given
the image patches of the testing cephalogram, the relat@dwoshapes can be inferred by
the deep machine. In our experiments, the maximum numbeeiattions in Algorithml

is set at 30. The sketching results are shown in Eigide by side with those by the AAM
[5], the extended ASM1[7], and the multimodal DBN16]. We follow the configurations of
the MDBN in [16]. Only seven closed structures are located in the binasi lafaps by the
MDBN as shown in the last row of Figk (a).
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Figure 4: (a) The sketching results (yellow contours witeegr landmarks) of our methods
and the AAM, the extended ASM, and the multimodal DBN (witikefd cases blue outlined).
(b)The confusion matrix of erra# related to ten kinds of structures. The overlapping o
contours extracted by all four methods and the ground trlittasion(c), lower molar(d),
upper incisorandnasal spling(e), andcurve of sella and basioff) (yellow-Ground truth,
blue-Ours, red-AAM, green-EASM, cyan-MDBN).

There are inherent blurs in LCX images due to various reaisorisical data capturing.
The feature extractions based on the appearances andrbgptishape models sometimes
fail due to the image quality (See blue outlined in Fig(a)). For example, the extracted
molars tend to shirk or swell, and even translate due to gbsouages resulted from the
overlapped neighboring teeth of the left- and right-sidekareover, it's relatively hard to
cover the shape variations outside the training set. Ftauiicg, the aspect ratio of the cran-
iofacial structure in the fifth case in Figl (a) is a bit different from others, and no such
cases existin the training set. The shape and appearased-b@adels fail to converge. The
performance of the multimodal DBN seems to be more robustidening its deep structure.
However, MDBN still fail to find the contour dbwer mentorof the fifth case. Our method
can produce reasonable results even when all other methibdsié to the poor image qual-
ity. We also show the overlapping of contours extracted bfoar methods and the ground
truth of one LCX image in Fig.4 (c-f) of nasion lower molar, upper incisorand nasal
spling andcurve of sella and basionThe contours computed by our method are closer t
the real annotated ones.

The quantitative comparisons of all methods are illusttéteTablel, where the errors
are computed as the enveloped areas between the groundanttiurs and automatically
estimated. The average errors of our methods are lower thatihar methods.

Landmarks. Some landmarks on the anatomical structures are impoxasiinical den-
tistry, especially to the orthodontics. There are heuwrigtles P] to locate landmarks when
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given the contour shapes. For instan®e marker is on the lower end @rbitale contour.
It's deserved to note that, in our system there is no exptieitker patterns like those in the
AAM and ASM. The landmarks are all located by the heuristieswas shown in Fig4
(a). Tablel shows the errors computed as the L2 distance between thmatitally located
markers and the manually annotated.

6 Conclusions

In the paper, we propose a novel contour sketcher systenhdéor €X images, especially

those blurred due to device-specific distortions or sulgldmovements. By virtue of the
bimodal DBM, the sketching problem is formulated as a crosstal morphology transfer

from texture features of regular image patches to arbittantour curves of structures. The
sketcher as an integration of the hierarchical pictoriatiei@nd the deep learning can infer
the positions and contours of anatomical structures éffelgt The proposed method is

robust to noisy data compared to state-of-the-arts.
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