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Abstract

The lateral cephalogram is a commonly used medium to acquirepatient-specific mor-
phology for diagnose and treatment planning in clinical dentistry. The robust anatomical
structure detection and accurate annotation remain challenging considering the personal
skeletal variations and image blurs caused by device-specific projection magnification,
together with structure overlapping in the lateral cephalograms. We propose a novel
cephalogram sketcher system, where the contour extractionof anatomical structures is
formulated as a cross-modal morphology transfer from regular image patches to arbi-
trary curves. Specifically, the image patches of structuresof interest are located by a
hierarchical pictorial model. The automatic contour sketcher converts the image patch
to a morphable boundary curve via a bimodal deep Boltzmann machine. The deep ma-
chine learns a joint representation of patch textures and contours, and forms a path from
one modality (patches) to the other (contours). Thus, the sketcher can infer the contours
by alternating Gibbs sampling along the path in a manner similar to the data comple-
tion. The proposed method is robust not only to structure detection, but also tends to
produce accurate structure shapes and landmarks even in blurry X-ray images. The ex-
periments performed on clinically captured cephalograms demonstrate the effectiveness
of our method.

1 Introduction

Lateral cephalogram X-ray (LCX) images are essential to provide patient-specific morpho-
logical information of anatomical structures, such as teeth and craniofacial skeletons. The
manual annotation of the anatomical structures requires the practitioner’s experiences. The
probably involved errors come from annotation variances ofdifferent practitioners and the
device-specific distortions due to radiographic film magnification rates. Moreover, the LCX
images can be blurry due to the overlapping of the left and right-sided craniofacial structures.
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Figure 1: Flowchart of our cephalogram sketcher system.

The automatic annotation of anatomical structures in cephalograms has been performed
in the biomedical engineering for nearly twenty years. From1990s, the knowledge-based
methods [8, 22] and the neural networks, e.g. pulse coupled neural networks [13] and cellu-
lar neural networks [9, 15], have been used in automatic annotation of cephalograms. Con-
sidering that most salient markers are on the boundary of projected structures in LCX im-
ages, various image filters including the canny filters [28] and mathematical morphological
operators [2, 10], were introduced to the cephalogram analysis. The shape and appearance-
model-based methods, e.g. the active shape model (ASM) [3] and active appearance model
(AAM) [ 5] have been proved to be efficient and robust in facial featureextraction. The AAM
and ASM have also been applied to the LCX images [23, 29]. Recently, the transfer learning
technique was employed to get marker definitions from already annotated images instead of
starting from scratch [27]. The existed work shows a nice performance on well-captured
LCX images, where projected skeletal structures have clearboundaries. However, inherent
blurs due to structure overlappings are unavoidable in the one-shot LCX images, and often
blemish the feature extraction. Moreover, most systems only handle a portion of salient cran-
iofacial landmark set [9, 13, 15]. Although model-based methods can produce a full set of
markers [23, 29], the pattern fitting can fail to converge in blurry images. It is challenging to
automatically annotate anatomical structures with high fidelity in LCX images.

In this work, we propose a novel cephalogram sketcher systemas shown in Fig.1 for
the automatic annotation of anatomical structures, especially for the blemished images due
to structure overlappings and device-specific distortionsduring projection. Firstly, we intro-
duce an hierarchical extension of a pictorial model to detect anatomical structures. Second-
ly, the bimodal deep Boltzmann machine is employed to sketchthe structure contours. The
deep machine tends to find a compact representation of observations, and the joint hidden
layer can accommodate intrinsic structures from both modalities. Via the joint layer, a path
between two modalities is established and the morphology data can be transferred. Specif-
ically, the contour sketcher takes advantages of the path toextract the contour definitions
from the patch textures by alternating Gibbs sampling. In the training process, the data of
both modalities are present to learn a joint representation. In the sketching process, the con-
tours are absent, and the inference can be seen as the completion of the missing data. To
summarize, the contributions of this paper are:

• An application of the bimodal DBM to contour sketching and landmarking of anatom-
ical structures in LCX images.

• An hierarchical extension of the pictorial model to detect craniofacial skeletal struc-
tures.

• A joint representation learning for dense textures of structure patches together with
the sparse and arbitrary contours.
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2 Related Work

Deep learning. The deep learning draws great interests in recent years. Theelementary
concepts and reviews can be found in [1, 4]. The deep learning provides a robust approach
to find a compact representation of observed data. In the seminal work of deep learning [11],
Hintonet al. used the stacking of several restricted Boltzmann machines (RBM) to learn the
low-dimensional codes of face and digit images [14]. The deep learning has been widely
used in the generative shape modeling [6, 12], the discriminative image classification [20],
and the acoustic modeling for phone recognition [18].

In the deep structure, the hidden layer of one RBM serves as the observation of the
higher RBM. However, the deep structure learnt layer-by-layer and followed by fine-tuning
is different from the deep Boltzmann machine [24], where all the hidden layers are solved
together with an undirected path between neighboring layers. Compared to a single layer
of stochastic hidden units in the RBM and the deep energy machine [20], the computation
of conditional posterior over multiple hidden layers is expensive and intractable [11, 24].
The contrastive wake sleep algorithm was used to learn multiple hidden layers of a deep
belief network (DBN) [11]. An approximate inference was proposed to train DBM [25]
efficiently, where the mean-fields techniques were used to minimize the KL-divergence of
the approximated posteriors. The shape Boltzmann machine [6] subdivided the visible and
the first hidden layers with overlappings for the purpose of efficient parameter learning.
Multimodal deep learning. The deep learning has been applied in multimodal learning un-
der an assumption that different modalities of the same contents share a similar representa-
tion layer. The multimodal learning has very tantalizing properties that the missing modality
can be filled in given the observed one. Even when some data from one modality is absent,
the deep structure can still learn the joint representationof multi-modalities. Ngiamet al.
[19] investigated the correlations between the audio and visual data by a shared hidden layer.
All connections in the multimodal DBN were directional, anda shared representation layer
connected with the hidden layers of the audio and visual modalities. Srivastavaet al. [26]
proposed the multimodal DBM for the text-image retrieval from unimodal and multimodal
queries, which combined the text- and image-specific DBMs for a joint representation. The
mean-field inference together with an MCMC-based stochastic approximation was used to
estimate the model’s stochastic parameters. The undirected DBM is more powerful than
DBN considering the bi-way sampling during the learning process which can make use of
both modalities for an optimal parameter selection. Luoet al. [16] employed the multimodal
DBN to infer binary label maps from components patches for the purpose of facial feature
segmentations. Different from the close regular regions infacial components parsing, the
shapes of anatomical structures in LCX images are arbitraryand often with open contours.
For instance, the contour of the lower brink of the cranium basion is complicated (see re-
gion 9 in Fig. 2). The binary maps in [16] can be no longer used to locate the anatomical
structures and landmarks. In our work, we employ the parametric curves to represent shapes
of anatomical structures. The bimodal DBM is employed to finda joint hidden layer of
observed textures of image patches together with the sparsecontour curves.

3 Anatomical Structure Detection

The cephalogram is an X-ray projection of the patient’s head. The image can be parsed in-
to a set of anatomical structures. The spatial configurations of anatomical structures vary
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among individuals considering skeletal morphologies, head sizes, and subtle head move-
ments during image capturing. As shown in Fig.2(a)(b), the set of anatomical structures
of interest is denoted asS= {si |i = 1, ...,10} includingnasion, orbitale, upper incisor and
nasal spine, lower incisor and menton, upper molar, lower molar, porion, Pt, curve of sella
and basion, andmandible. The patches related to anatomical structures are represented by
positions and sizes of the bounding boxes, andsi = (xanc

i , ẇi , ḣi) with box anchor pointxanc
i .

The predefined width and height are denoted as ˙wi andḣi respectively.
The structure detection can be performed by a pictorial model [7], which is under an

assumption that all parts are nearly conditional independent given their neighbors. Thus,
the likelihood probability of the holistic shape can be estimated by a product of local ones.
However, considering the structure definition as shown in Fig. 2(a), most structures in L-
CX images are overlapping, and some structures are even totally inside the others. For
instance, the second and the eighth structures are inside the structure ofmandible. There
is an ad-hoc hierarchical architecture as shown in Fig.2(c). Two kinds of correlations ex-
ist in the hierarchical architecture, the intra- and inter-layer correlations denoted asCq and
Cr respectively. As illustrated in Fig.2(c), Cq =

⋃D−1
i=0 ci,i are structure correlations in-

side the same layerL, andCr =
⋃D−2

i=0 ci,i+1 related to correlations between layers, where
cl ,l ′ = {< si ,sj > |si ∈ Ll ,sj ∈ Ll ′}. D is the number of layers in the hierarchical architecture,
and set at 3 in our experiments. The edge set in the graph is denoted asC=Cq∪Cr .

Given a cephalogramI , the structure definitionS, and the parametersΘ = (Θq,Θr) with
respect to the intra- and inter-layer correlations, the posterior probability distribution accord-
ing to the Bayes rule is defined asP(S|I ,Θ) ∝ P(I |S,Θ)P(S|Θ), whereP(S|Θ) is a shape
prior distribution. P(I |S,Θ) is the image likelihood given the hierarchical architecture and
the model parameters. The likelihood can be factorized as a product of likelihoods of local
structures. In this work, the logarithm of the likelihood isrewritten as a combination of those
related to the inter- and intra-layers (with partition functions removed for clarity).

lnP(I |S,Θq,Θr) =
D−1
∑

l=0
∑

sl
i∈Ll

lnφ(sl
i )+

D−2
∑

l=0
{ ∑
<sl

i ,s
l+1
j >∈Cr

lnϕ(sl
i ,s

l+1
j |Θr,i j )+ ∑

<sl+1
i ,sl+1

j >∈Cq

lnϕ(sl+1
i ,sl+1

j |Θq,i j )}.

(1)

φ(si) is potential of local structures computed based on the output of SVM classifiers as
in [21], and φ(si) = (1+ exp(Ai fi(si) +Bi))

−1, where fi is the output of the linear SVM
classifier for theith kind of structuressi . We employ the HOG to describe the texture feature
of local patches. The image patch is subdivided in to 8×8 cells, and neighboring 2×2 cells
are blocked. The histogram after gradient vector voting inside each cell is normalized by its
surrounding four blocks containing this cell. Here the bin number is set at 9, and each cell is
represented by a 36-dimensional vector. A linear SVM is trained for each kind of structures
respectively, where the parameters,Ai andBi, are predefined.

The pairwise potentialϕ(si ,sj |Θi j ) accounts for the correlations among neighboring
structures. We consider two kinds of relationships, the distancedi j betweensi andsj , and
the angleθi j defined by the line segment connecting the centers of two structures and the
horizontal axis as shown in Fig.2(a).

ϕ(si ,sj |Θi j ) =N (di j ,θi j |µi j ,Σi j ) . (2)

Given the training data, the Gaussian distribution parameters,(µi j ,Σi j ), can be obtained.
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Figure 2: The illustration of anatomical structures (a) andlandmarks definitions (b). (c)The
hierarchical architecture of ten anatomical structures.

The hierarchical pictorial model can locate anatomical structures and result to image patches
containing structures by maximizing the likelihood (Eq.1).

4 Contour Sketcher

The contour-sketcher based on the bimodal deep learning is proposed for accurate struc-
ture contours and landmarks. The multimodal deep Boltzmannmachine [26] is employed
to build a joint representation of the image patch (one modality) and the corresponding con-
tours (the other modality). In online sketching process, the unknown contours of the input
patches are absent, and can be predicted by Gibbs sampling onthe hidden modalities from
the conditional distributions.

The contourst of the anatomical structures are discretized into a set of points, and
t = (x1,y1,x2,y2, ...,xn,yn), wheren is the number of points sampled on structures con-
tours. The point sets of contours are predefined consideringthe sizes and shapes of dif-
ferent anatomical structures. The anchor pointtanc=

(

∑n
i=1xi

/

n,∑n
i=1yi

/

n
)

. The contours
are aligned accordingly to the anchor point andt̃ = t− tancI[1×n]. All the contour anchors are
moved to the origin. The anchor point together with the aligned contours(tanc, t̃) is used to
represent the contour shapes of anatomical structures.

4.1 Deep Learning

When given multimodal data, the deep architecture can builda joint representation by virtue
of hidden layers from each modality. The shared attributes can be transferred from one
modality to the other via the joint layer. There are symmetrically coupled stochastic units
in DBM as a stacking of RBMs. Considering the undirected RBM,there is a complete
path from one modality to the other. Specifically, the observed data of one modality take
a role in training the parameters related to layers of the other modality, which is the main
difference from the multimodal DBN [26]. As shown in Fig.3, one four-layer network is
used to model the correlations between image patches and contour shapes. The bottom layers

(vm,h
(1)
m , ...,h(K−1)

m |m= p, t) are related to the image patches and contour shapes respectively,
whereK is the number of hidden layers and set at 3 in our experiments.The top oneh(K)
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Figure 3: The training (a) and testing (b) of bimodal deep Boltzmann machine for contour
sketching.

is the joint hidden layer connecting both modalities. In ourwork, two kinds of RBMs, the
Gaussian-RBM (for visible-hidden layers) and Bernulli-RBM (for hidden-hidden layers),
are used to build the deep architecture. The joint energies of visible and hidden units in
Gaussian-RBM and Bernulli-RBM are defined as follows:

Eg(v,h
(1)|ϑ ) =

Nv

∑
i
(vi −bi)

2
/

2σ2−
Nh,1

∑
j

a1
j h

(1)
j −

Nv

∑
i

Nh,1

∑
j

viW
1
i j h

(1)
j , and

Eb(h
(l)
,h(l+1)|ϑ ) =−

Nh,l

∑
i

al
i h

(l)
i −

Nh,l+1

∑
j

al+1
j h(l+1)

j −
Nh,l

∑
i

Nh,l+1

∑
j

hl
iW

l+1
i j h(l+1)

j ,

whereNv andNh are the number of units in the visible and hidden layers. The parameters
ϑ = (W, σ , a, b) include the mapping matrixW between adjacent layers and biases,a and
b, within each layers. In our experiments, all input variables are normalized and the variance
σ of the Gaussian distribution is set at 1. Given two modalities, the patchesvp and the shape
contoursvt , the joint distribution

p(vp,vt |ϑ ) = ∑
h(K−1)

p ,h(K−1)
t , h(K)

exp(−E j) ·

∏
m=p,t

∑
h(1)m , ..., h(K−2)

m

(

exp
(

−Eg

(

vm,h
(1)
m

)

− ...−Eb

(

h(K−2)
m ,h(K−1)

m

)))

.
(3)

The partition functions are removed for clarity. The termE j is the energy between the
joint hidden layerh(K) and the upper hidden layers with respect to the patch and contour

modalities,h(K−1)
p andh(K−1)

t , and

E j =−
Nh,K

∑
i

aK
i h(K)

i − ∑
m=p,t





Nm
h,K−1

∑
j

aK−1
m, j h(K−1)

m, j +

Nm
h,K−1

∑
i

Nh,K

∑
j

h(K−1)
m,i WK,m

i j h(K)
j



 . (4)

It is intractable to learn the parameters by maximizing the above likelihood. Alternatively,
the problem can be solved by variational approximation techniques, mean-fields, to minimize
the KL-divergence between the approximated and the true posteriors p(h|vp,vt) [26]. The
model parameters are initialized by learning the layer-wise stacking of RBMs.
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For the purpose of contour sketching, the conditional probability p(vt |vp,ϑ) needs to
be solved. In DBM, when given the observed modality,vp, the missing modalityvt can
be generated by alternating Gibbs sampling. Specifically,vp serves as input, while all the
hidden units are initialized randomly (e.g. set at zeros in our case). The contours are absent
from input, and can be generated when go through the joint layers from the patch machine to
the contour machine. In order to decide when to stop the iteration, we measure a score of the
contour predication by the distance between the input imagepatches and the reconstructed.

P(vt |vp,ϑ) ∝ exp
(

−
∥

∥

∥
vp− vmodel

p

∥

∥

∥

)

, (5)

wherevmodel
p is the reconstructed image patch features, i.e. the HOG histograms in our

system, andvp the input. The inference is performed under an assumption that the more
similar the estimated patches textures to the input, the more reasonable contours resulted.

4.2 Structure Inference: Positions and Contours

In order to acquire the positions and contours of anatomicalstructures, we employ a greedy
searching technique as summarized in Algorithm1. To begin with, the positions of all struc-
tures are initialized by the mean values of the Gaussian distributions of the inter- and intra-
layer correlations (Eq.2). And then, for each structure, the candidate positions with high
classifier scores within the variances of the Gaussian distribution (Eq.2) are explored, while
the shape parameters of all other structures are held fixed. The log-likelihood (Eq.1 ) is
computed as the detection score. The conditional probability of the sketcher (Eq.5) is com-
puted as the sketching scores. The shape and contour variables with the high detection and
sketching scores are assigned to the current structure. Allother structures are processed in
the same way. The iterative process continues until the combined scores of all anatomical
structures are lower than the predefined thresholdη or the iteration number is large enough.

Algorithm 1 LCX-Image-Sketcher
Input: LCX images, score thresholdη, andIter_MAX;
Output: Contours and landmarks of anatomical structures;

1: Initialize all structure positions by mean values of the correlation distribution (Eq.2);
2: Evaluate individual structure classifiers by the linear SVM(Section 3);
3: Iter_num= 0;
4: while Iter_num< Iter_MAX do
5: for Each kind of anatomical structuresdo
6: Explore candidate locations with high classifier scores within correlation variances of

N
(

di j ,θi, j
)

(Eq. 2);
7: Compute detection scores as Eq.1;
8: Compute sketching score as Eq.5;
9: Assign shape and contour variables with high detection and sketching scores (≥ η) to the

current structure;
10: end for
11: end while
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Table 1: The contours errors (mm2) and landmarks errors (mm) of our methods compared
with the AAM, the extended ASM (EASM), and the multimodal DBN(MDBN).

Contour s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 avg.

Ours 25.3 34.3 30.6 17.9 37.7 49.7 28.1 26.7 34.0 48.4 33.3
AAM 37.1 41.7 32.7 31.5 52.6 57.2 59.5 35.7 44.4 44.2 43.7
EASM 49.9 37.0 36.0 93.7 57.3 69.9 64.0 36.3 35.2 53.5 53.3
MDBN 72.5 n/a 57.2 104 91.5 105 51.2 60.0 n/a n/a 77.5

Marker Se Or N Ba Cd PNS Ls Li Me Go avg.

Ours 0.345 1.04 0.315 0.373 1.16 0.670 0.936 1.05 1.13 0.655 0.768
AAM 0.806 2.10 1.16 0.815 1.24 1.93 1.05 1.61 1.96 0.900 1.36
EASM 0.652 0.973 1.68 1.42 1.55 1.31 1.79 1.36 1.24 1.73 1.37
MDBN n/a n/a 2.70 n/a n/a 2.11 2.67 1.27 n/a n/a 2.18

5 Experiments

Data Set. The data set includes 724 LCX images captured in the clinicaldental hospital.
The resolution of digitalized LCX images is 720×900. In our system, 60% images are used
as the training data, and the remaining for testing. The training data are manually annotated
by two practitioners for bounding boxes and contours of the local anatomical structures.
The bounding boxes are used to train the structure detectors, and the contour shapes are
used to learn the sketcher. There exist blurs in most images of the data set due to structure
overlappings and sometimes subtle movements during capturing.
Methods. We compare our sketcher method with the mainstream techniques in craniofa-
cial components detection and feature extraction, including those using the AAM [5], the
extended ASM [17], and the multimodal DBN [16].

5.1 Detection

Ten kinds of structures are considered in our experiments. The annotated bounding boxes
in the training LCX images are used to learn the hierarchicalpictorial model. The structure
detection results are shown in the first row in Fig.4 (a). The location errorel is measured as a
ratio of anchor point difference between the ground truthxanc

i,GT and the automatically detected

xanc
i to the size of bounding box.el

i,i =
∥

∥

∥xanc
i,GT − xanc

i

∥

∥

∥

/

√

ẇi ḣi . The confusion matrix of

location errors of ten anatomical structures is shown in Fig. 4 (b). The average error is
7.46e−2.

5.2 Sketcher

The bimodal DBM is trained with respect to each kind of anatomical structures. When given
the image patches of the testing cephalogram, the related contour shapes can be inferred by
the deep machine. In our experiments, the maximum number of iterations in Algorithm1
is set at 30. The sketching results are shown in Fig.4 side by side with those by the AAM
[5], the extended ASM [17], and the multimodal DBN [16]. We follow the configurations of
the MDBN in [16]. Only seven closed structures are located in the binary label maps by the
MDBN as shown in the last row of Fig.4 (a).
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Figure 4: (a) The sketching results (yellow contours with green landmarks) of our methods
and the AAM, the extended ASM, and the multimodal DBN (with failed cases blue outlined).
(b)The confusion matrix of errorel related to ten kinds of structures. The overlapping of
contours extracted by all four methods and the ground truth of nasion(c), lower molar(d),
upper incisorandnasal spline(e), andcurve of sella and basion(f) (yellow-Ground truth,
blue-Ours, red-AAM, green-EASM, cyan-MDBN).

There are inherent blurs in LCX images due to various reasonsin clinical data capturing.
The feature extractions based on the appearances and the principal shape models sometimes
fail due to the image quality (See blue outlined in Fig.4 (a)). For example, the extracted
molars tend to shirk or swell, and even translate due to obscure images resulted from the
overlapped neighboring teeth of the left- and right-sides.Moreover, it’s relatively hard to
cover the shape variations outside the training set. For instance, the aspect ratio of the cran-
iofacial structure in the fifth case in Fig.4 (a) is a bit different from others, and no such
cases exist in the training set. The shape and appearance-based models fail to converge. The
performance of the multimodal DBN seems to be more robust considering its deep structure.
However, MDBN still fail to find the contour oflower mentonof the fifth case. Our method
can produce reasonable results even when all other methods fail due to the poor image qual-
ity. We also show the overlapping of contours extracted by all four methods and the ground
truth of one LCX image in Fig.4 (c-f) of nasion, lower molar, upper incisorandnasal
spline, andcurve of sella and basion. The contours computed by our method are closer to
the real annotated ones.

The quantitative comparisons of all methods are illustrated in Table1, where the errors
are computed as the enveloped areas between the ground truthcontours and automatically
estimated. The average errors of our methods are lower than all other methods.

Landmarks. Some landmarks on the anatomical structures are important to clinical den-
tistry, especially to the orthodontics. There are heuristic rules [2] to locate landmarks when
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given the contour shapes. For instance,Or marker is on the lower end ofOrbitale contour.
It’s deserved to note that, in our system there is no explicitmarker patterns like those in the
AAM and ASM. The landmarks are all located by the heuristic rules as shown in Fig.4
(a). Table1 shows the errors computed as the L2 distance between the automatically located
markers and the manually annotated.

6 Conclusions

In the paper, we propose a novel contour sketcher system for the LCX images, especially
those blurred due to device-specific distortions or subtle head movements. By virtue of the
bimodal DBM, the sketching problem is formulated as a cross-modal morphology transfer
from texture features of regular image patches to arbitrarycontour curves of structures. The
sketcher as an integration of the hierarchical pictorial model and the deep learning can infer
the positions and contours of anatomical structures effectively. The proposed method is
robust to noisy data compared to state-of-the-arts.
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