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Abstract

This paper proposes a novel approach to encode cross-channel texture correlation for
color texture classification task. Firstly, we quantitatively study the correlation between
different color channels using Local Binary Pattern (LBP) as the texture descriptor and
using Shannon’s information theory to measure the correlation. We find that (R, G) chan-
nel pair exhibits stronger correlation than (R, B) and (G, B) channel pairs. Secondly, we
propose a novel descriptor to encode the cross-channel texture correlation. The proposed
descriptor can capture well the relative variance of texture patterns between different
channels. Meanwhile, our descriptor is computationally efficient and robust to image ro-
tation. We conduct extensive experiments on four challenging color texture databases to
validate the effectiveness of the proposed approach. The experimental results show that
the proposed approach significantly outperforms its mostly relevant counterpart (Multi-
channel color LBP), and achieves the state-of-the-art performance.

1 Introduction
Color and Texture are two important aspects of natural images. It is widely recognized that
they provide strong complementary cues to each other in a lot of computer vision applica-
tions, such as object recognition [21, 26], flower recognition [14, 19], texture classification
[18], material recognition [10, 23], content-based image retrieval, color texture segmentation
and many more.

Recently, Local Binary Pattern (LBP) descriptor [15] and its variants [6, 7, 8, 16, 19, 30]
have been widely applied on texture relevant tasks due to their computational efficiency and
great texture discriminative ability. In [16], Timo et al. systematically introduced the LBP
operator and its several variants including uniform LBP and rotation invariant LBP. Since
then, LBP has been widely applied to a lot of tasks, such as face recognition, image retrieval,
and many more [17]. Recently, in [7], Guo et al. proposed a completed LBP operator, which
further enriches the original LBP feature.
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Figure 1: An illustration of LBPs in RGB channels.

The simplest and most direct method to incorporate color cue to the texture classifica-
tion task is to extract LBP histograms from each color channel, and then concatenate the
histograms into a final image representation. In the literature, this method has been used in
several works [12, 31]. In [12], Maenpaa et al. used color LBPs (different color space) for
texture classification, and in [31], Zhu et al. proposed to use color LBPs for object recogni-
tion.

However, the above color and texture fusing approach just treats each channel indepen-
dently, and ignores the cross-channel texture correlation information. In fact, there exists
strong correlation between texture patterns of different color channels. Such a correlation
reflects the common character and the difference between patterns from different channels.
Fig. 1 shows a typical structure in RGB color channels. The LBP sequences in RGB chan-
nels are greatly correlative to each other. Encoding the correlation effectively can greatly
boost the discriminative ability of the feature.

In this paper, we propose a novel method to encode the cross-channel texture correla-
tion to conduct color texture classification task. Firstly, we quantitatively study the texture
correlation between different color channels using LBP as texture descriptor and using the
Shannon’s information entropy as correlation measurement. Based on the study, we find that
(R, G) channel pair have stronger texture correlation than (R, B) and (G, B) channel pairs.
Secondly, we propose a novel approach to encode the cross-channel texture correlation. The
proposed method captures well the relative variance of the texture patterns between different
channels. In practice, we divide three color channels into three pairs and encode one pair
each time. The histograms of three pairs are finally concatenated into a final image represen-
tation. The proposed method is computationally efficient and robust to image rotation. Its
computational cost is similar to the classical multi-channel color LBP. The novel encoding
strategy of the proposed method can guarantee rotation invariance.

2 Cross-Channel Texture Correlation

2.1 Preliminaries of LBP
The LBP descriptor was firstly proposed by Ojala et al. [16] to depict pixel-wise texture
information. Each LBP pattern depicts one kind of local structure of natural images, such
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as edge, contour, flat region and so on. For each pixel in an image, its LBP pattern can be
calculated as follows:

LBP(n,r|c) =
n−1

∑
k=0

s(gk −gc)2k, s(x) =

{
1, x ≥ 0
0, x < 0,

(1)

where n is the number of neighbors and r is the radius, c is the central point, gc is the pixel
value of the central pixel, and gk is the pixel value of its k-th neighbor.

Ojala et al. also reported that these patterns with very few spatial transitions depicted the
fundamental properties of an image, and they called these patterns as “uniform patterns”. In
uniform patterns, the number of spatial transitions can be defined as follows:

Φ(LBP(n,r|c)) =
n−1

∑
k=0

|s(gk −gc)− s(gk+1 −gc)|, (2)

where gn equals to g0. The uniform patterns are defined as these patterns with Φ(LBP(n,r|c))≤
2. For example, the LBP pattern “01111000” is a uniform pattern, and “00010110” is a non-
uniform pattern.

The value of uniform LBP (LBPu) depends on the start point of the circular binary se-
quence. Defined on different start points, LBPu will have different values. For example,
the uniform patterns of a circular sequence “00000001” defined on 1st or 2nd position are
different. In this paper, we use LBPu(n,r|c, i) to denote the LBPu pattern defined on the start
point i, where 0 ≤ i ≤ n−1.

To achieve good robustness to image rotation, Ojala et al. introduced Rotation Invariant
LBP (LBPri) and Rotation Invariant Uniform LBP (LBPriu). LBPriu can be defined as:

LBPriu(n,r|c) =

{
∑n−1

k=0 s(gk −gc), Φ(LBP(n,r|c))≤ 2
n+1, otherwise,

(3)

For the number of neighbors n = 8, the LBP has 28 = 256 patterns, in which there are 58
uniform patterns and 198 non-uniform patterns. Usually, all 198 non-uniform patterns are
summarized into one pattern. Thus, LBPu has 59 patterns, and the LBPriu has 10 patterns.

2.2 Cross-Channel Texture Correlation
Texture and color are two important and complementary information for natural images.
They can help us to perceive and predict the material of the real world. Do texture patterns
from different color channels have correlation? How strong is the correlation? And in which
pair of channels, the texture correlation is stronger?

To answer these questions, we propose to use information entropy and mutual informa-
tion to analyze the texture correlation. In information theory, entropy is used to measure
the uncertainty of a random variable. In [22], Shannon defines the information entropy of a
discrete random variable as:

H(X) =
N

∑
i=1

−p(xi) logb p(xi), (4)

where p(xi) is the probability of variable X of i-th state, N is the number of possible states,
and b is typically set to be 2, e, or 10.
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Similarly, the joint information entropy of two variables can be defined as:

H(X ,Y ) = ∑
x∈X

∑
y∈Y

−p(x,y) logb p(x,y), (5)

where p(x,y) is the joint probability distribution function of X and Y .
Mutual information is an effective method to characterize the correlation between vari-

ables. It provides an effective measure to characterize the mutual dependence of the two
random variables. The mutual information can be defined as:

I(X ,Y ) = ∑
x∈X

∑
y∈Y

p(x,y) logb(
p(x,y)

p(x)p(y)
), (6)

where p(x,y) is the joint probability distribution function of X and Y , and p(x) and p(y)
are the marginal probability distribution functions of X and Y respectively. The mutual
information can also be denoted as I(X ,Y ) =H(X)+H(Y )−H(X ,Y ). Larger I(X ,Y ) means
stronger correlation between X and Y . In machine learning, mutual information has been
used as a criterion for feature selection and feature transformations.

To quantitatively assess the correlation of texture patterns between different color chan-
nels, we use LBP as the texture descriptor. The statistics are conducted on about 30000 tex-
ture images, which come from the CUReT, KTH-TIPS, KTH-TIPS2a and ALOT databases.
For each channel, we calculate a 256-dimensional LBP histogram. For a pair of two channel-
s, we individually compute their LBP patterns in each channel, and then calculate a 256×256
co-occurrence histogram. We normalize the histograms with L1 norm, then calculate the in-
formation entropy and mutual information according to Eq. 5 and Eq. 6. The statistical
results are shown in Table 1.

Table 1: Texture Correlation between (R, G), (R, B), and (G, B).
(R, G) H(R) H(G) H(R, G) I(R, G)

Information Entropy 4.37 4.35 6.87 1.84
(R, B) H(R) H(B) H(R, B) I(R, B)

Information Entropy 4.37 4.37 7.82 0.91
(G, B) H(G) H(B) H(G, B) I(G, B)

Information Entropy 4.35 4.37 8.05 0.67

From Table 1, we have the following two key observations. Firstly, all channel pairs
have strong correlation. Secondly, (R,G) channels have stronger correlation than (R,B) and
(G,B) since I(R,G) is significantly larger than I(R,B) and I(G,B).

The significant correlation between different color channels reflects the common and
different characteristics between patterns from different channels. Encoding the correlation
may boost the discriminative power of features. Therefore, we propose a novel method to
encode the cross-channel texture correlation below.

2.3 Encoding Cross-Channel Texture Correlation
To jointly encode pairwise color channels, we divide the three color channels into three
pairs. Take RGB color space as an example, we separate them into {(R,G),(R,B),(G,B)}.
Compared to joint encoding of all the three channels simultaneously, our strategy have two
merits. Firstly, the dimension of joint encoding of two channels is much lower. Secondly,
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Figure 2: An illustration of encoding strategy between (R, G) color channels.

this method has better robustness than the joint encoding of three color channels. If only one
texture pattern out of three channels varies, our strategy can still achieve partial invariance.

Take (R,G) channels as an example, as shown in Fig. 2, the Cross-Channel LBP
(CCLBP) can be defined as follows:

CCLBPR,G(n,r|cR,cG) = [LBPriu
R (n,r|cR),LBPu

G(n,r|cG, i)]co, (7)

where
i = argmax

i
{ROR(LBPR(n,r|cR), i) | i = 0,1, ....,n−1}, (8)

cR and cG are the central points of R and G channels respectively, LBPriu
R (n,r|cR) means

the encoding of the R channel with LBPriu, and LBPu
G(n,r|cG, i)) denotes to encode the G

channel using uniform LBP associated with the starting index of i, and i is the index as
defined in Eq. 8, which maximizes the LBP sequence in R channel. ROR(x, i) performs a
circular bit-wise right shift on the P-bit number xi times. Here, [ , ]co is a co-occurrence
operator. Our previous works [19, 20] have shown the effectiveness of co-occurrence.

As shown in Fig. 2, we have marked the position of i on the figure. As indicated before,
the uniform LBP pattern depends on the defined start point of the binary sequence. The
position of i will vary along with image rotation. Thus, the LBPu

G(n,r|cG, i) is invariant to
image rotation. Since LBPriu

R (n,r|cR) is invariant to image rotation, the encoding strategy of
Eq. 7 is rotation invariant.

According to Eq. 7, the dimension of joint encoding of two channels is 10× 59 = 590.
In this paper, we use dense sampling to calculate the histogram. For each pixel in an image,
we accumulate their joint patterns into the corresponding bin of histogram. Finally, we
normalize the histogram feature with L1 norm. The histograms of (R, B) and (G, B) can be
built similarly. Thus, by concatenating these histograms of each channel pairs, we obtain the
whole CCLBP representation for an image as:

CCLBPR,G,B = [CCLBPR,G,CCLBPR,B,CCLBPG,B]. (9)

in which the dimension of CCLBPR,G,B is 590×3 = 1770.
The CCLBP has two merits. (1) CCLBP feature is rotation invariant. We have detailly

illustrated this merit using the Fig. 2 before. (2) The computational cost of CCLBP is low.
Similar with the classical color LBP, we compute the LBP pattern in each channel, and then
conduct the co-occurrence statistics according to Eq. 7. The cost for computing Eq. 7 is
extremely low, and can be ignored.



6 XIANBIAO QI ET AL.: CCLBP

(d) ALOT

(c) KTH-TIPS2a

(b) CUReT

(a) KTH-TIPS

Figure 3: Samples of KTH-TIPS, CUReT, KTH-TIPS2a and ALOT.

2.4 Image Representation based on Multi-Scale CCLBP

In previous subsection, We have described the feature extraction process for a single scale.
The multi-scale strategy [16] [11] has shown better performance than the single scale. Mo-
tivated by the work in [16] [11], we also adopt multi-scale CCLBP for image representation
and classification. Firstly, the CCLBP features are extracted individually from each scale.
Then, the features from all scales are concatenated into a final representation. Different from
the classical multi-scale LBP (MS-LBP) that always uses larger neighbors at larger scale, we
use just 8 neighbors for all scales to reduce the feature dimension. For instance, when using
three scales, the classical MS-LBP uses LBP(8,1), LBP(16,2), and LBP(24,3). Instead, we
use LBP(8,1), LBP(8,2), and LBP(8,3).

3 Experiments

3.1 Databases Introduction

KTH-TIPS [9] contains 10 texture classes, with 81 images per class. The images are
captured at 9 scales from three different illumination directions and three different poses.
Note that this dataset has scale variance, but its scale changes continuously from 0.5 to 2.
We use 40 images per class for training and the rest for testing.

CUReT [5] is a widely used texture dataset. We use the same subset as [27]. The
subset consists of 61 classes with 92 images per class. These images are captured under
different illuminations from seven different viewing directions. The changes of viewpoint
under different illumination greatly varies the texture appearance. Following [27], we use 46
samples per class for training and 46 for testing.

KTH-TIPS2 [2] is designed to study the generalization ability of material recognition
methods to the new material instance. It includes 11 classes with 4 instances in each catego-
ry. All 11 categories contain 4608 images in total. All instances are captured from varying
viewing angles, lighting conditions and scales. Usually, 1, 2 or 3 instances from all 4 in-
stances are used for training. The remained instances are used for testing.

ALOT [1] is a large color image collection. The database contains 250 classes with 100
images per class. The images are captured under varied viewing angles, illumination angle
and illumination color. In addition, these images are captured using four different cameras.
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In this paper, we use 25 images from one camera for training and the rest images from the
other three cameras for testing. Some samples from each dataset are shown in Fig. 3.

Classifier. To conduct the classification experiments, we adopt SVM with χ2 kernel.
It has been shown in [3] that kernel SVM shows better performance than nearest neighbor
classifier. After applying L1 normalization on features X and Y , the similarity kernel can
be denoted S(X ,Y ) = ∑N

i=1
2Xi×Yi
Xi+Yi

. In this paper, we use Vlfeat [28] and Libsvm [4] for
computing the kernel and conducting the classification. In our experiments, we find that for
KTH-TIPS and CUReT, HSV color space works well and for KTH-TIPS2a and ALOT, RGB
color space works well. Thus, we use HSV for KTH-TIPS and CUReT and use RGB color
space for KTH-TIPS2a and ALOT.

We divide the experimental evaluation into two parts. In the first part, we validate the
effectiveness of the proposed method by comparing it with its direct counter-part method. In
the second part, we compare the proposed method with several state-of-the-art methods.

3.2 Evaluation of the Proposed Method
The effectiveness of Cross-Channel Texture Correlation. Here, we conduct experiments
to validate the effectiveness of the proposed CCLBP by comparing it with gray-scale LBP
and color LBP. We compare these three features on single scale. The scales (8, 1) and (8, 2)
are individually used. We summarize the experimental results in Table 2.

Table 2: Comparison (%) of LBPriu, Color LBPriu, CCLBP on KTH-TIPS, CUReT.
(8, 1) (8, 2)

Datasets LBPriu Color LBPriu CCLBP LBPriu Color LBPriu CCLBP
KTH-TIPS(40) 80.21 91.51 99.00 82.74 91.06 98.93

CUReT(46) 60.91 82.77 98.68 64.95 84.38 98.89

According to Table 2, it is apparent that the proposed CCLBP achieves significant im-
provement compared to the gray-scale LBP and the classical color LBP. For instance, on
CUReT, using LBP(8, 1), gray-scale LBP (LBPriu) gets 60.91% and color LBP (color LBPriu)
obtains 82.77%, but CCLBP achieves 98.68% that improves gray-scale by about 38% and
color LBP by about 16%. The improvement well validates the effectiveness of CCLBP on
capturing the cross-channels correlation.

Table 3: Performance evaluation (%) of CCLBP on different scales.
Databases KTH-TIPS CUReT KTH-TIPS2a

Setting 40 46 1 2 3
(8, 1) 99.00 98.68 63.20 70.61 74.22
(8, 2) 98.93 98.89 64.89 71.16 74.83
(8, 3) 98.65 98.84 66.28 72.26 74.51

(8, 1) +(8, 2) 99.12 99.14 66.01 73.16 76.82
(8, 1) +(8, 3) 99.00 98.68 66.77 73.45 76.27
(8, 1) +(8, 3) 99.05 99.16 67.65 73.16 76.57

(8, 1) +(8, 2) + (8, 3) 99.16 99.29 67.21 74.25 77.39

The Influence of Multi-Scale. We also evaluate the influence of multi-scale strategy.
Here, we use three scales ( (8, 1) and (8, 2) are (8, 3) ). The experiments are conducted on
three databases including KTH-TIPS, CUReT and KTH-TIPS2a.

According to the experimental results in Table 3, we have the following two observation-
s. (1) single-scale CCLBP has achieved great performance. For instance, CCLBP with (8,
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1) achieves 98.68% on KTH-TIPS and 99.00% on CUReT. (2) multi-scale CCLBP further
improves the single scale CCLBP. For instance, on KTH-TIPS2a, multi-scale CCLBP (using
three scales) greatly outperforms any single scale CCLBP.

3.3 Comparison with State-of-art Methods
Experiments on KTH-TIPS and CUReT. Here, we conduct experiments on KTH-TIPS
and CUReT. We report averaged performance over 100 random trials.

Table 4: Performance (%) on KTH-TIPS and CUReT Database
Methods KTH-TIPS CUReT Methods KTH-TIPS CUReT

Zhang et al. [29] 96.1 95.3 MS-LBP [16] 94.1 91.7
Nguyen et al. [13] 95.7 - Color MS-LBP 95.9 94.9

VZ-patch [27] 92.4 98.0 PRI-CoLBP [19] 98.3 98.6
Caputo et al. [3] 94.8 98.0 MS-CCLBP 99.2 99.3

From Table 4, we have three observations. Firstly, Color MS-LBP and CCLBP achieve
better performance than gray-scale MS-LBP. This observation shows that color information
is effective on both datasets. Secondly, CCLBP greatly outperforms Color MS-LBP. This
fully validates the effectiveness of the proposed CCLBP on depicting the cross-channel tex-
ture correlation. Finally, compared to several state-of-the-art methods, such as bag-of-sift
[29], PRI-CoLBP [19], our CCLBP achieves better performance on both datasets.

Experiments on KTH-TIPS2a. KTH-TIPS2a has 11 categories with four instances in
each category. Usually, several among four instances are used for training and the rest for
testing. The evaluation method between [10] and [24] is different. For the work [10], when
they use three instances per class for training, they repeat the random selection for each
category. But for the work [24], they use the pre-selected three instances for all categories.
It means that for the work [24], when 1th, 2th and 3th instances are selected for training, all
categories use their corresponding 1th, 2th and 3th instances for training. To fairly compare
our work with them, we report two kinds of results.

Table 5: Performance (%) on KTH-TIPS2a
Comparison with LHS using split 1

Setting Dense SIFT [10] MS-LBP [10] MS-LBP+Color [10] MS-CCLBP
1 45.5(±3.6) 59.1(±3.7) 61.4(±2.8) 67.7(±3.4)
2 52.3(±2.3) 65.8(±1.4) 70.4(±0.7) 73.2(±3.0)
3 56.4(±2.6) 70.7(±3.6) 73.1(±4.6) 74.8(±4.1)

Comparison with LHS using split 2
Setting LBP [16] LTP [25] LHS [24] MS-CCLBP

3 69.8(±6.7) 71.3(±6.3) 73.0(±4.7) 77.4(±6.7)

Table 5 shows the performance of our method along with existing methods. Using the
same evaluation method with [10], our approach significantly outperforms MS-LBP for 8.6%
and 3.9% using one or three instances for training respectively. Similarly, using the same
evaluation method with [24], our method greatly outperforms their reported result (73.0%).
Meanwhile, our method also outperforms LBP, LTP.

From Table 5, we also find that our method has similar variance with the compared works
under the same evaluation method. For instance, using the evaluation in [24], the variance of
our method is (6.7%), which is similar with LBP (6.7%) and LTP (6.3%).
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Experiments on ALOT. To systematically compare the CCLBP with gray-sacle and
color LBP on ALOT, we compare them in single scale and multiple scales. For single scale,
we use LBP(8, 1). Similarly, color LBP and CCLBP also use (8, 1). gray and color MS-LBP
use (8, 1), (16, 2) and (24, 3), but our MS-CCLBP just use (8, 1), (8, 2) and (8, 3). In practice,
our CCLBP has lower computational cost. The results are shown in Table 6.

Table 6: Classification Accuracy (%) of LBP, Color LBP and CCLBP on ALOT Dataset.
Setting Single Scale (8, 1) Multiple Scales

Methods LBP Color LBP CCLBP MS-LBP Color MS-LBP MS-CCLBP
Camera 1 22.38 38.60 60.29 53.61 64.94 74.17
Camera 2 30.87 51.50 70.52 69.62 79.10 85.56
Camera 3 11.87 19.56 35.55 42.81 53.73 60.29
Camera 4 31.87 50.49 70.69 69.07 78.69 84.38

For single scale, we can observe that color LBP and CCLBP significantly outperforms
gray-scale LBP. The observation well validates that color information is effective on ALOT
dataset. Meanwhile, we also find that CCLBP achieves better performance than color LBP.
This point shows that encoding the cross-channel texture correlation is effective for a lot of
color texture classification tasks.

Multi-scale strategy greatly improve the recognition accuracy of their corresponding
single-scale features. For instance, using the images from camera 1 for training, CCLBP
gets 60.29% , while MS-CCLBP using three scales gets 74.17% that improves single-scale
CCLBP by about 14%. Meanwhile, MS-CCLBP also greatly outperforms its counterparts
(MS-LBP and Color MS-LBP). It should be noted that there exists strong image rotation on
ALOT dataset, but the proposed approach still works well. This fact well demonstrates the
robustness of the proposed method to image rotation.

4 Conclusions

This paper proposed a novel approach to encode cross-channel texture correlation for tex-
ture classification task. We quantitatively evaluated the cross-channel texture correlation of
different color channels using LBP as the texture descriptor and using Shannon’s informa-
tion entropy as measurement of correlation. Our study indicates that (R, G) channel pair has
stronger correlation than (R, B) and (G, B) channel pairs. To capture such texture correlation,
we propose a novel approach to encode the cross-channel texture correlation. The proposed
approach captured well the relative variance of the texture patterns between different chan-
nels. Meanwhile, the proposed method is computationally efficient and robust to image
rotation. Superior performance on four challenging color texture databases demonstrated the
effectiveness of the proposed method.
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