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The performance of local stereo matching algorithm highly depends on
the support window selected, in which the cost are aggregated. A variety
of cost aggregation approaches (proposed before 2008) were comprehen-
sively analyzed in [7] and these approaches attempt to seek an optimal
support window for each pixel by changing the window size, shape and
center offset. The ideal optimal window should satisfy the rule that all
pixels in this window lie on the same disparity with the center pixel.

Recent years have witnessed a great deal of attention focused on the
Adaptive Support Weight (ASW) based methods [1, 4, 6, 8], proposed
firstly by Yoon and Kweon in [8]. The ASW methods assign an adap-
tive weight to each pixel of the support window, depending on how it
is likely to lie on the same disparity with the center pixel. Essentially,
the assignment of an adaptive weight amounts to changing the support
window in terms of size, shape or center offset. In ASW methods, the
weight function is very important, because it directly decides the support
window. The weight function proposed in [8] is based on bilateral filter.
Following this pioneering work, various weight function were proposed,
including in particular the segmented bilateral filter weight function [6],
the geodesic weight function [1], the guided filter weight function [4].
Thus, which weight function is the most accurate one? Recently, Hosni et
al. [2] carried out a comprehensive comparative study to fairly evaluate
various weight functions while fixing the preprocessing, matching cost
function and post-processing. Their conclusion is that both bilateral fil-
ter weight function [8] and guided filter weight function [4] are the best,
since bilateral filter weight function performs better on the average rank
while guided filter weight function produces a lower average error.

We revisit the bilateral filter weight function [8], which obeys two
rules that, given a support pixel, (1) if its color is similar to the center
pixel’s and (2) if it is spatially close to the center pixel, it is likely to lie
on the same disparity with the center pixel. Therefore, the bilateral filter
weight function consists of two parts, color similarity term and spatial
proximity term, defined as:

wb f (p,q) = e−
∆cpq

γc e−
∆gpq

γg , (1)

where q is a pixel within the support window centered at pixel p. The
color similarity ∆cpq represents the Euclidean distance between the color
of these two pixels, measured in the CIELab color space as

∆cpq =

√
∑

j∈(L,a,b)
(I j(p)− I j(q))2 (2)

and the geometric proximity ∆gpq is the Euclidean distance between their
coordinates (x,y) as

∆gpq =
√
(px−qx)2 +(py−qy)2. (3)

The parameter γc and γg are set by user to adjust the color similarity term
and geometric proximity term respectively.

While these two rules can handle most depth ambiguities within a
support window, it unfortunately fail to resolve the ambiguity induced by
nearby pixels at different disparities but with similar colors as illustrated
in Figure 1. (a) is the reference image and we focus on the regions within
the red box, zoomed in (b). In (b), there are two nearby planks with similar
colors but in different disparities. An imaginary situation is presented in
(c): these two planks are substituted by one cross-shaped plank in the
same disparity. The bilateral filter weight of pixel p and q in (b) is equal
to that in (c), because their color similarity and spatial distance are the
same. But obviously these two weights should not be equal because the
two pixels are in the same disparity in (c) but not in (b). We can observe

Figure 1: (a) reference image. (b) zoomed real situation. (c) zoomed
imaginary situation. (d) boundary cue (e) zoomed boundary cue.

that the depth discontinuity between pixel p and q in (b) induces a color
discontinuity between these two planks and results in color boundaries
nearby, as shown in (e). Therefore, the boundary cue is helpful to obtain a
more faithful weight. As a result, we propose in this paper a trilateral filter
weight function which extends the bilateral filter weight function by a new
boundary strength term that measures the boundary strength between two
pixels, defined as

wt f (p,q) = e−
∆cpq

γc e−
∆gpq

γg

(
e−

∆Epq
γe + e−

∆cpq
γc e−

∆gpq
γg

)
, (4)

where exp
(
−∆Epq/γe

)
is the boundary strength term and parameter γe is

set by user. The boundary strength at pixel p is defined as [3],

E(p) = ∑
θ

√
(I(p)∗Fθ ,odd)2 +(I(p)∗Fθ ,even)2, (5)

where ∗ denotes the convolution operator; the odd-phase filter Fθ ,odd and
even-phase filter Fθ ,even are a pair of quadrature filters in orientation θ .

Finally, we evaluated our method on the Middlebury benchmark [5],
using four pairs of standard data sets, and fairly compared the proposed
trilateral filter weight function with the guided filter weight function [4]
and bilateral filter weight function [8]. The proposed method ranks 15th

out of 150 submissions and is the current most accurate local stereo match-
ing algorithm on the benchmark.
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