
LOVEGROVE ET AL.: SPLINE FUSION 1

Spline Fusion: A continuous-time
representation for visual-inertial fusion with
application to rolling shutter cameras

Steven Lovegrove
slovegrove@gwu.edu

Alonso Patron-Perez
apatron@gwu.edu

Gabe Sibley
gsibley@gwu.edu

Department of Computer Science
The George Washington University
Washington, DC, USA

Abstract

This paper describes a general continuous-time framework for visual-inertial simul-
taneous localization and mapping and calibration. We show how to use a spline param-
eterization that closely matches the torque-minimal motion of the sensor. Compared to
traditional discrete-time solutions, the continuous-time formulation is particularly useful
for solving problems with high-frame rate sensors and multiple unsynchronized devices.
We demonstrate the applicability of the method for multi-sensor visual-inertial SLAM
and calibration by accurately establishing the relative pose and internal parameters of
multiple unsynchronized devices. We also show the advantages of the approach through
evaluation and uniform treatment of both global and rolling shutter cameras within visual
and visual-inertial SLAM systems.

1 Introduction
In this paper, we describe a method for performing SLAM robustly using inexpensive sensors
such as rolling shutter CMOS cameras and MEMS IMUs. We make use of a continuous-time
model for the trajectory of the camera that naturally allows us to fuse information from many
unsynchronized and potentially high-rate sensors whilst limiting state size. We model the
rolling shutter of a camera explicitly (Figure 1) and can form errors generatively on inertial
measurements. This model is not limited to visual-inertial SLAM and may also simplify
integration of other sensors such as spinning SICK Laser rangers.

Another important application of our method is unsynchronized multi-sensor intrinsic
and extrinsic least-squares calibration. By defining the pose of all sensors within a continuous-
time model, all sensor parameters can be estimated jointly, including those that measure time
derivatives such as gyroscopes and accelerometers. Given approximate initial sensor config-
urations, we can find very accurate sensor parameters.

A number of real-time visual odometry and SLAM systems have been proposed previ-
ously, including those that operate on stereo sequences, such as [6, 20, 29], and monocular

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Comport, Malis, and Rives} 2007

Citation
Citation
{Mei, Sibley, Cummins, Newman, and Reid} 2010

Citation
Citation
{Strasdat, Davison, Montiel, and Konolige} 2011



2 LOVEGROVE ET AL.: SPLINE FUSION

t1

t0

t2

⇢0

⇢1 ⇢2 t0

t1

t2 p2

p1

p0

p2

p1

p0

Figure 1: Rolling shutter cameras are easily modeled with continuous-time SLAM. Land-
marks observed at pixel locations pi are represented by their inverse depth, ρi and time
of measurement, ti. Each scanline is effectively a single push-broom camera (left); such
scanline-camera measurements are captured over time, which defines the image returned by
the actual sensor (right).

sequences, such as [9, 18, 24, 28]. These works have focused only on global shutter cam-
eras where all pixels of an image are exposed over the same duration. Treatment of rolling
shutter devices is less mature, and has largely focused on removing its influence to create
the equivalent global shutter image without distortion [3, 12]. These results can then be fed
into a standard visual SLAM pipeline, but at the price of decoupling the two optimization
procedures, potentially introducing uncorrectable biases and increasing processing costs.

Among the first to tackle rolling shutter artifacts for visual SLAM were Klein et al.
when porting PTAM to the iPhone [19]. They use feature tracks over consecutive images to
estimate instantaneous rotational velocities for each of the keyframes, and use this to predict
a first order correction to measurements. Hedborg et al. propose quite a similar model,
but explicitly embedded within the adjustment for rolling shutter cameras. They explicitly
model the effect in video sequences by expressing the camera’s pose whilst exposing line l
as a linear interpolation of neighboring ‘key’ poses [11].

Monocular visual SLAM poses a further problem, that of scale drift. When observing
landmarks from a single camera, reconstruction is only valid up to some unknown scale,
which is often fixed arbitrarily during initialization. When traveling any distance, monocular
systems experience drift in scale as well as positional drift since these cannot be observed
directly, only through the chain of measurements to wherever it may have been fixed. Stras-
dat et al. propose to express this scale as an explicit parameter when closing loops, aiding
loop closures across scales and subsequent graph relaxations [28].

Another approach to fixing scale drift is to augment the platform with a device capable
of measuring absolute scale. Nuetzi et al. compare scale correction within both an Extended
Kalman Filter and spline fitting approach, though optimization does not exist on the spline
but is used to adjust scale to match an IMU [25]. Kelly et al. demonstrate the observability
of scale in visual-inertial calibration [14]. A different observability analysis of this problem
was given in [13]. They propose a robust version of an EKF to simultaneously calibrate the
system and merge measurements. A similar filter-based visual-inertial calibration method
was presented in [22], which provides an observability analysis based on Lie derivatives.
This method requires a calibration target but achieves a high level of accuracy.

All the previously mentioned methods use discrete time state representations. A 2D
spline-based continuous trajectory representation for a SLAM system is introduced in [4],

Citation
Citation
{Davison} 2003

Citation
Citation
{Klein and Murray} 2008

Citation
Citation
{Newcombe, Lovegrove, and Davison} 2011

Citation
Citation
{Strasdat, Montiel, and Davison} 2010

Citation
Citation
{Baker, Bennett, Kang, and Szeliski} 2010

Citation
Citation
{Jia and Evans} 2012

Citation
Citation
{Klein and Murray} 2009

Citation
Citation
{Hedborg, Forssen, Felsberg, and Ringaby} 2012

Citation
Citation
{Strasdat, Montiel, and Davison} 2010

Citation
Citation
{Nuetzi, Weiss, Scaramuzza, and Siegwart} 2010

Citation
Citation
{Kelly and Sukhatme} 2010

Citation
Citation
{Jones, Vedaldi, and Soatto} 2007

Citation
Citation
{Mirzaei and Roumeliotis} 2008

Citation
Citation
{Bibby and Reid} 2010



LOVEGROVE ET AL.: SPLINE FUSION 3

where splines are used to represent the trajectories of tracked objects, providing a substantial
reduction of the state space. Closer to our approach is [10], where a continuous represen-
tation is used. Like ours, their method is based on a spline representation of the vehicle
trajectory. Rotation and translation components are parameterized by independent splines.
The authors test their approach for camera-IMU calibration, but it requires known landmark
locations. Our approach employs a better spline parameterization of rotation-translation, and
we also present a framework for joint visual-inertial self-calibration using only feature tracks
extracted from a calibration pattern.

2 Continuous-time representation
Furgale et al. demonstrated that by using a continuous-time representation, significant pa-
rameter reduction could be achieved, and visual / inertial objectives could be unified within
their least squares minimization [10]. Although a great proof of concept, the representation
did not lend itself to accurate representation with splines because of the choice to param-
eterize pose using the Cayley-Gibbs-Rodrigues formulation and then to interpolate in this
space. This representation suffers from several drawbacks: (i) it has a singularity at 180◦,
(ii) interpolations in this space will not reflect minimum distances in the group of rotations,
and (iii) it does not well approximate torque-minimum trajectories. We instead choose the
Lie Algebra se3 of the matrix group SE3 in order to undertake smooth trajectories in the
manifold space of rigid body translations and rotations, but we do so only locally, not in a
global frame. This parameterization is free from any singularities and offers a very good
analytical approximation to minimum torque trajectories. More details follow in section 2.2.

2.1 Camera pose transformations
We represent transformations between cameras by the 4× 4 matrix representing homoge-
neous point transfer between these frames. For example, Tb,a represents the matrix that
transforms homogeneous points defined in frame a to the equivalent points in frame b, such
that xb ∝ Tb,axa. We can decompose Tb,a as follows:

Tb,a =

[
Rb,a ab
0T 1

]
, Tb,a ∈ SE3, Rb,a ∈ SO3,

where Rb,a is a 3× 3 orthonormal rotation matrix representing rotation-only point transfer
between frames a and b. Here, ab represents the position of the origin of frame a in the
frame of reference b. If Tb,a represents the motion undergone in time ∆t seconds between
frames Tw,a and Tw,b (where w is a world coordinate frame) traveling at constant angular and
linear velocity, this velocity can be expressed in matrix form as Ω = 1

∆t log
(
Tb,a

)
,Ω∈R4×4,

where log is the matrix logarithm. For the matrix group SE3, the logarithmic map and its
inverse (the exponential map) can be computed in closed form [27].

2.2 C2-continuous curves in SE3

At the heart of our approach lies a continuous trajectory representation. We chose a formu-
lation which offers: (i) local control, allowing the system to function online as well as in
batch, (ii) C2 continuity to enable us to predict IMU measurements, and (iii) good approxi-
mation of minimal torque trajectories. Cubic B-Splines are a well-known representation for

Citation
Citation
{Furgale, Barfoot, and Sibley} 2012

Citation
Citation
{Furgale, Barfoot, and Sibley} 2012

Citation
Citation
{Strasdat} 2012



4 LOVEGROVE ET AL.: SPLINE FUSION

trajectories in R3, but are not so easily applied when dealing with 3D rotations, such as inter-
polation in SO3. For example, C2 continuity is not necessarily preserved [15]. We choose to
parameterize a continuous trajectory using cumulative basis functions formed using the Lie
Algebra, equivalent to that proposed in [8]. Using cumulative B-Spline basis functions were
first proposed for quaternion interpolation in [16] in the context of computer animation. This
representation is not only C2 continuous, but it also provides a very simple second derivative
formulation.

2.2.1 Representing B-Splines with cumulative basis functions

The standard basis function representation of a B-Spline curve of degree k−1 is given by:

p(t) =
n

∑
i=0

piBi,k(t) (1)

where pi ∈ RN are control points at times ti, i ∈ [0, . . . ,n] and Bi,k(t) are basis functions,
which can be computed with the De Boor - Cox recursive formula [5, 7]. Equation 1 can be
reorganized into its cumulative form as [16]:

p(t) = p0B̃0,k(t)+
n

∑
i=1

(pi−pi−1)B̃i,k(t) (2)

where B̃i,k(t) = ∑
n
j=i B j,k(t) are cumulative basis functions. Making use of the logarithmic

and exponential maps described in the previous section, we can re-write Equation 2 to de-
scribe trajectories in SE3 by substituting the control point differences with the logarithmic
map Ωi = log(T−1

w,i−1Tw,i)∈ se3 between control poses, and the summation by multiplication
of exponents:

Tw,s(t) = exp(B̃0,k(t) log(Tw,0))
n

∏
i=1

exp(B̃i,k(t)Ωi), (3)

where Tw,s(t) ∈ SE3 is the pose along the spline at time t, and Tw,i ∈ SE3 are the control
poses. We use the subscript w to emphasize that the pose at time t and control poses are
given in the world coordinate frame.

2.2.2 Cumulative cubic B-Splines

In this paper we focus on the particular case of cumulative cubic B-Splines (k = 4). We
assume that control points are distributed at uniform time intervals ∆t. In a cubic B-Spline,
four control points influence the value of the spline curve at time t. We define these control
points to be the set [ti−1, ti, ti+1, ti+2] for t ∈ [ti, ti+1). We can further simplify the notation
by using a uniform time representation s(t) = (t− t0)/∆t. This transforms the control point
times ti into uniform times si ∈ [0,1, . . . ,n]. Given a time si ≤ s(t) < si+1 we define u(t) =
s(t)−si. Using this time formulation and based on the matrix representation for the De Boor
- Cox formula [26], we can write the matrix representation of a cumulative basis B̃(u) and
it’s time derivatives ˙̃B(u), ¨̃B(u) as:

Citation
Citation
{Kim, Kim, and Shin} 1995{}

Citation
Citation
{Crouch, Kun, and Leite} 1999

Citation
Citation
{Kim, Kim, and Shin} 1995{}

Citation
Citation
{Boor} 1972

Citation
Citation
{Cox} 1972

Citation
Citation
{Kim, Kim, and Shin} 1995{}

Citation
Citation
{Qin} 2000



LOVEGROVE ET AL.: SPLINE FUSION 5

B̃(u)=C


1
u
u2

u3

 , ˙̃B(u)=
1
∆t

C


0
1

2u
3u2

 , ¨̃B(u)=
1

∆t2 C


0
0
2

6u

 , C=
1
6


6 0 0 0
5 3 −3 1
1 3 3 −2
0 0 0 1


The pose in the spline trajectory can now be defined as:

Tw,s(u) = Tw,i−1

3

∏
j=1

exp
(
B̃(u) j Ωi+ j

)
, (4)

where the ith index is taken from the index of the interval where u(t) is defined, the subscript
in B̃(u) j indexes the jth element of B̃(u) (0 based), and Ω is defined as before. Note that
B̃(u)0 = 1,∀u. We can express first and second derivates of the pose w.r.t. time as follows:

Ṫw,s(u) = Tw,i−1

(
Ȧ0A1A2 +A0Ȧ1A2 +A0A1Ȧ2

)
, (5)

T̈w,s(u) = Tw,i−1

(
Ä0A1A2 +A0Ä1A2 +A0A1Ä2 +

2
(
Ȧ0Ȧ1A2 + Ȧ0A1Ȧ2 +A0Ȧ1Ȧ2

)) , (6)

A j = exp
(
Ωi+ jB̃(u) j

)
, Ȧ j = A jΩi+ j

˙̃B(u) j,

Ä j = Ȧ jΩi+ j
˙̃B(u) j +A jΩi+ j

¨̃B(u) j

3 Generative model of visual-inertial data

3.1 Parameterization
We parameterize landmarks in our system using inverse depth ρ ∈ R+ from the first observ-
ing pose along our spline. It has been shown that inverse depth representation allows for
simple treatment of points at infinity, greatly easing monocular feature initialization [23].
We can transfer an inverse depth point observed in a projective camera frame a at image
coordinates pa ∈ R2 to its corresponding image position pb ∈ R2 in frame b viaW:

pb =W(pa;Tb,a,ρ) = π

(
[Kb |0]Tb,a

[
K−1

a
[pa

1

]
;ρ
])

, (7)

where π(P) = 1
P2

[P0,P1]
ᵀ is the homogeneous projection function and Ka, Kb ∈ R3×3 are

the camera intrinsics for frames a and b respectively.
The cumulative B-Spline parameterization allows us to compute analytical time deriva-

tives, as seen in Section 2.2.2. This allows us to trivially synthesize accelerometer and gyro-
scope measurements, which we can in turn use to form errors on observed measurements.

Gyro(u) = Rᵀ
w,s(u) · Ṙw,s(u)+bias, (8)

Accel(u) = Rᵀ
w,s(u) · (s̈w(u)+gw)+bias, (9)

where Ṙw,s and s̈w are the appropriate sub-matrices of Ṫw,s and T̈w,s respectively (as defined
in Section 2.1), and gw is the acceleration due to gravity in the world coordinate frame.

Citation
Citation
{Montiel, Civera, and Davison} 2006



6 LOVEGROVE ET AL.: SPLINE FUSION

3.2 Minimization
Given our generative models for visual and inertial data, we can solve for our spline and
camera parameters in batch or over a window by minimizing an objective function formed
from the difference of measured to predicted observations. By using a continuous-time for-
mulation, reprojection errors and inertial errors can be treated uniformly, weighted by their
respective information matrices Σ computed from device specifications or calibration. As we
receive new visual-inertial measurements, we iteratively attempt to find argminθ E(θ):

E(θ) = ∑
p̂m

(
p̂m−W(pr;Tc,sTw,s(um)

−1Tw,s(ur)Ts,c,ρ)
)2

Σp
+

∑
ω̂m

(
ω̂m−Gyro(um)

)2

Σω

+∑
âm

(
âm−Accel(um)

)2

Σa
, (10)

where summations are taken over all visual and inertial measurements p̂m, ω̂m and âm (or
those within a sliding window). Measurement m occurs at time um. For inverse depth land-
mark measurements, ur denotes the reference time at which the landmark was first observed.
θ represents the vector of parameters to optimize (which may vary by application), includ-
ing spline control poses, camera intrinsics, landmark inverse depth values ρ , camera to IMU
transformation (Tc,s) and IMU biases. We achieve this via iterative non-linear least squares,
which requires that we linearize E(θ), find the minima of this approximate function, up-
date θ and repeat. We further parameterize pose transform updates by their corresponding
Lie Algebra in se3, see e.g. [27]. We use the flexible least squares solver Ceres in order to
minimize this objective [1].

4 Projection into a rolling shutter camera
Although the projective geometry of a rolling shutter camera remains the same as that of
a global shutter camera, every line of the image is exposed for a different period, each one
more delayed than the last. When the camera is in motion, this can cause the image to appear
distorted and skewed. Using a continuous-time model for the motion of the camera, we are
free to treat every line of the image as its own exposure. Doing so however will require that
we project each landmark separately into each line. Although each whole pixel has only a
single exposure time, our point landmarks are measured by observing the location of their
image patches, even though these patches have spatial extent spanning multiple lines.

We instead favor to treat the y-axis as a continuous parameterization of time, where
sub-pixel values represent differing time intervals. This approximation balances patch mea-
surements that occur over multiple lines.

pb(t) =
[

xb(t)
yb(t)

]
=W(pa;Tb,a(t),ρ). (11)

At first it seems to complicate projection of a landmark into the camera as we cannot
know in advance into which vertical sub-pixel value, and hence instance in time, a landmark
will fall. Meingast et al. analyze this problem of projection into a rolling shutter camera
when using a constant velocity motion model under different motions and show that it can
be solved analytically in constrained circumstances [21]. Though we do not assume constant

Citation
Citation
{Strasdat} 2012

Citation
Citation
{Agarwal and Mierle} 2012

Citation
Citation
{Meingast, Geyer, and Sastry} 2005



LOVEGROVE ET AL.: SPLINE FUSION 7

velocity trajectories, we follow an approach very similar to their projection under general
motion. The moment a 2D observation is exposed can be expressed as yb(t) = h(t−s)/(e−s),
where s is the frame start time, e is the end frame time, and h is the height of the image in
pixels. We can see that there is no reason that this implied time will match that of Equation
11. We first project the landmark at a time within the frame interval that corresponds to our
best guess of its y-axis location, perhaps initialized from the last frame. We then perform a
1st order Taylor series expansion of the landmark projection around this time, and solve for
the unknown time discrepancy:

pb(t +∆t) =W(pa;Tb,a(t),ρ)+∆t
dW(pa;Tb,a(t),ρ)

d t
(12)

yb(t+∆t) =
h(t +∆t− s)

e− s
, ∆t =−h.t0 + s.(yb(t)−h)− e.yb(t)

(s− e) d Wy(pa;Tb,a(t),ρ)
d t +h

(13)

This can be repeated, setting t ← t +∆t after every iteration. After only two or three
iterations, we find t to converge with high precision to a consistent projection / observation
time, even for severe rolling shutter.

5 Experiments
We have conducted experiments in both simulation and with real data to evaluate our flexible
continuous-time approach. We first present sliding window visual odometry results on a
simulated monocular rolling shutter dataset. We continue by demonstrating our system on
real data for joint visual-inertial SLAM and self-calibration.

5.1 Simulated rolling shutter visual odometry
To tackle monocular visual odometry from a rolling shutter camera, we have generated a
simulated sequence exhibiting severe rolling shutter effects (Figure 2a). This dataset sim-
ulates a person walking quickly through a city block over 200 frames. For constant time
operation, we consider a fixed-size sliding window of cubic spline control points, adding
new knots as required and optimizing as new visual landmark measurements are made.

To bootstrap the system, we start by using the initialization approach described in [17].
This method assumes global shutter landmark observations, but it does well enough as an
initial guess, particularly when the camera is moving slowly. This provides us with an ini-
tial transformation between two selected initialization frames, which can then be used to
triangulate features that are added to the spline. Feature points are represented by their 2D
coordinates, time (derived from image line) and inverse depth at the point when they were
first seen, as described in Section 3.1.

When a new frame is captured, the image projection of previously observed landmarks
is predicted from the spline using the method described in Section 4. From these predic-
tions, data association is made by appearance matching using FREAK descriptors [2] against
nearby features. The last N control points of the spline are optimized, holding the first three
fixed. A very weak motion model is also included at each control point to favor low acceler-
ation - this keeps the spline well constrained even if there are too few measurements within
a knot interval. If the number of matched landmarks is below a threshold (64 in our case),

Citation
Citation
{Klein and Murray} 2007

Citation
Citation
{Alahi, Ortiz, and Vandergheynst} 2012



8 LOVEGROVE ET AL.: SPLINE FUSION

(a) (b)

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

 

 

ground truth
global shutter
rolling shutter

(c)

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5

 

 

(d)

Figure 2: Results from simulated monocular rolling shutter experiment. (a) Still from simu-
lated sequence exhibiting large rolling shutter warp. (b) Final estimated trajectory and sparse
structure when modelling rolling shutter. (c) and (d) Comparison of ground truth trajectory
(red) against estimated trajectories when modelling (blue) and not modelling (green) rolling
shutter.

new landmarks are initialized at infinity from feature points in the current image and added
to the spline.

Figure 2 demonstrates the described method operating on our simulated sequence when
modelling rolling shutter and also when incorrectly modelling time as per a global shutter
camera. We managed to recover the structure of the simulated city block without serious
distortions when rolling shutter was taken into account (Figure 2b). Ignoring rolling shutter,
a more pronounced drift is observed and, as expected, artifacts in the estimated trajectory are
particularly noticeable when rolling shutter distortions are larger (i.e. when turning around
a corner). The loop closure position error (normalized by the distance traveled) when mod-
elling rolling shutter is 0.0057, compared to 0.0472 for global shutter.

5.2 Self-calibration and scale

Our system can also perform full SLAM and self-calibration. Figure 3 demonstrates two
results of self-calibration estimating camera intrinsics, camera to IMU extrinsics, bias, grav-
ity vector, platform trajectory, and landmark 3D locations jointly. For this experiment, we
assume known point feature data association but unknown 3D location. Data association is
established using a grid target, first laid out as a plane and then curved into a more interest-
ing shape (to show the calibration target is not required). We used an Xtion to obtain rolling
shutter images fixed rigidly to a Microstrain 3DM-GX3-35 for inertial data. Images were
captured at 30fps while IMU measurements were sampled at 100Hz.

To initialize the system, all visual and inertial measurements are added to the spline



LOVEGROVE ET AL.: SPLINE FUSION 9

Figure 3: Example estimates computed for full-SLAM and self-calibration including
camera-to-IMU, IMU biases, gravity vector, camera intrinsics (with distortion), 3D land-
mark locations and sensor trajectory. Again, the structure and scale in these figures are
accurately estimated without any prior knowledge of the scene. This being our first experi-
mental analysis, full and robust front-end feature tracking has not been completed, and the
grid is only used to simplify data-association. This still allows evaluation and demonstration
of full SLAM and visual-inertial self-calibration.

Rolling Shutter Sequence Modelled Shutter Landmark MSE (pixels) Length (cm)
Planar Global 0.227 25.3094
Planar Rolling 0.160 25.3746
Curved Global 0.319 N/A
Curved Rolling 0.163 N/A

Table 1: Results of calibration assuming global or rolling shutter for the two sequences
depicted in Figure 3. The actual target length for the planar pattern is 25.45cm, fairly close
to both global and rolling shutter estimates.

in batch, and all control knots are set to the identity transform (control points are added
every 0.1 sec). The inverse depth of all observed feature points is set to 0, representing a
point at infinity along its ray. Camera intrinsics are initialized to a central principle point
and arbitrary focal length. The camera to IMU transform is initialized to a fair guess by
hand (within 45 degrees). While not required, the gravity vector can be initialized to a
sensible value by assuming that the camera is stationary at the very start and reading the
initial accelerometer value. This is a good approximation for the down direction even if the
camera is not stationary, providing it is not undergoing severe accelerations.

A purely monocular system would be unable to initialize using a single frame from points
initialized at infinity with no estimate of translation, but inertial measurements in this exper-
iment allow the system to converge. Importantly, it should be noted that the IMU provides
us with absolute scale, which is not true of a purely monocular configuration. Table 1 shows
landmark Mean Square Error for the two sequences recorded from a rolling shutter camera.
Results are shown for calibration when accurately modelling the rolling shutter and when
instead assuming a global shutter. We can see that MSE is reduced when considering the
true shutter model, and scale is established more accurately for the planar sequence where
we were able to measure the ground truth scale from the pattern using a ruler. The planar
sequence lasts for 12.86 seconds, which is long enough to establish scale accurately – just
0.3% scale error when considering the rolling shutter model, and 0.6% when ignoring it.



10 LOVEGROVE ET AL.: SPLINE FUSION

6 Conclusions and future work
We have demonstrated in simulation sliding window visual odometry for a rolling shutter
sequence based on a continuous-time model for the trajectory of the camera. In this mode,
we are able to estimate accurate camera trajectories and scene structure from a single camera
alone, and we have shown that ignoring the rolling shutter of the camera leads to poor results
compared to our method.

We have also shown visual-inertial calibration of camera intrinsics and IMU-to-camera
extrinsics from real data given accurate correspondences. Although this calibration is shown
with a rolling shutter camera, our method is flexible and naturally supports a wider range
of sensors than previous methods. By fusing sensor data jointly within a big window, we
reduce the bias that can be induced by linearization within a Kalman filter.

In the future we hope to speed up our work to make it applicable for real-time uses.
It currently only operates at just a few frames a second within its sliding window mode,
but the formulation of the spline does not change the overall complexity when compared to
traditional approaches.

Acknowledgements. This work was made possible by generous support from NSF EA-
GER grant 1249409 and Toyota Motor Engineering & Manufacturing North America, Inc.

References
[1] S. Agarwal and K. Mierle. Ceres Solver: Tutorial & Reference. Google Inc., 2012.

[2] A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: Fast retina keypoint. In Conference
on Computer Vision and Pattern Recognition, 2012.

[3] S. Baker, E. P. Bennett, S. B. Kang, and R. Szeliski. Removing rolling shutter wobble.
In Conference on Computer Vision and Pattern Recognition, 2010.

[4] C. Bibby and I. Reid. A hybrid slam representation for dynamic marine environments.
In International Conference on Robotics and Automation, 2010.

[5] C. De Boor. On calculating with b-splines. Journal of Approximation Theory, (6):
50–62, 1972.

[6] A. I. Comport, E. Malis, and P. Rives. Accurate quadri-focal tracking for robust 3d
visual odometry. In International Conference on Robotics and Automation, 2007.

[7] M. G. Cox. The numerical evaluation of b-splines. Journal of Applied Mathematics,
10(2):134–149, 1972.

[8] P. Crouch, G. Kun, and F. Silva Leite. The de casteljau algorithm on lie groups and
spheres. Journal of Dynamical and Control Systems, 5(3):397–429, July 1999.

[9] A. J. Davison. Real-time simultaneous localisation and mapping with a single camera.
In International Conference on Computer Vision, 2003.

[10] P. Furgale, T. D. Barfoot, and G. Sibley. Continuous-time batch estimation using tem-
poral basis functions. In International Conference on Robotics and Automation, 2012.



LOVEGROVE ET AL.: SPLINE FUSION 11

[11] J. Hedborg, P. Forssen, M. Felsberg, and E. Ringaby. Rolling shutter bundle adjustment.
In Conference on Computer Vision and Pattern Recognition, 2012.

[12] C. Jia and B. L. Evans. Probabilistic 3-d motion estimation for rolling shutter video
rectification from visual and inertial measurements. In International Workshop on Mul-
timedia Signal Processing, 2012.

[13] E. Jones, A. Vedaldi, and S. Soatto. Inertial structure from motion with autocalibration.
In ICCV Workshop on Dynamical Vision, 2007.

[14] J. Kelly and G. S. Sukhatme. Visual-inertial sensor fusion: Localization, mapping and
sensor-to-sensor self-calibration". International Journal of Robotics Research, 2010.

[15] M-J. Kim, M.-S. Kim, and S. Shin. A c2-continuous b-spline quaternion curve interpo-
lating a given sequence of solid orientations. In Computer Animation, 1995.

[16] M-J. Kim, M-S. Kim, and S. Shin. A general construction scheme for unit quaternion
curves with simple high order derivatives. In SIGGRAPH, 1995.

[17] G. Klein and D. Murray. Parallel tracking and mapping for small ar workspaces. In
International Symposium on Mixed and Augmented Reality, 2007.

[18] G. Klein and D. Murray. Improving the agility of keyframe-based SLAM. In European
Conference on Computer Vision, 2008.

[19] G. Klein and D. Murray. Parallel tracking and mapping on a camera phone. In Inter-
national Symposium on Mixed and Augmented Reality, 2009.

[20] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid. RSLAM: A system for
large-scale mapping in constant-time using stereo. International Journal of Computer
Vision, pages 1–17, 2010.

[21] M. Meingast, C. Geyer, and S. Sastry. Geometric models for rolling shutter cameras.
In OmniVis Workshop, 2005.

[22] F. M. Mirzaei and S. I. Roumeliotis. A kalman filter-based algorithm for imu-camera
calibration: Observability analysis and performance evaluation. IEEE Transactions on
Robotics and Automation, 5:1143 – 1156, 2008.

[23] J. Montiel, J. Civera, and A. J. Davison. Unified inverse depth parametrization for
monocular SLAM. In Robotics: Science and Systems, 2006.

[24] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. DTAM: Dense tracking and
mapping in real-time. In IEEE International Conference on Computer Vision, 2011.

[25] G. Nuetzi, S. Weiss, D. Scaramuzza, and R Siegwart. Fusion of imu and vision for ab-
solute scale estimation in monocular slam. In International Conference on Unmanned
Aerial Vehicles, 2010.

[26] K. Qin. General matrix representations for b-splines. The Visual Computer, 16(3-4):
177–186, 2000.

[27] H. Strasdat. Local Accuracy and Global Consistency for Efficient Visual SLAM. PhD
thesis, Imperial College London, 2012.



12 LOVEGROVE ET AL.: SPLINE FUSION

[28] H. Strasdat, J. M. M. Montiel, and A. Davison. Scale drift-aware large scale monocular
SLAM. In Robotics: Science and Systems, 2010.

[29] H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige. Double window optimi-
sation for constant time visual slam. In International Conference on Computer Vision,
2011.


