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In this paper, we describe a method for performing SLAM and visual-
inertial calibration robustly using inexpensive sensors such as rolling shut-
ter CMOS cameras and MEMS IMUs. We make use of a continuous-time
model for the trajectory of the camera that naturally allows us to fuse in-
formation from many unsynchronized and potentially high-rate sensors
whilst limiting state size. We model the rolling shutter of a camera ex-
plicitly and can form errors generatively on inertial measurements. This
model is not limited to visual-inertial SLAM and may also simplify inte-
gration of other sensors such as spinning SICK Laser rangers.

At the heart of our approach lies a continuous trajectory representa-
tion similar to the one presented in [2]. We chose a formulation which
offers:

• Local control, allowing the system to function online as well as in
batch.

• C2 continuity, to enable us to predict IMU measurements.

• A good approximation of minimal torque trajectories.

Cubic B-Splines are a well-known representation for trajectories in
R3, but are not so easily applied when dealing with 3D rotations, such
as interpolation in SO3. For example, C2 continuity is not necessarily
preserved [3]. We choose to parameterize a continuous trajectory using
cumulative basis functions formed using the Lie Algebra, equivalent to
that proposed in [1]. Using cumulative B-Spline basis functions were first
proposed for quaternion interpolation in [4] in the context of computer
animation. This representation is not only C2 continuous, but it also pro-
vides a very simple second derivative formulation.

The cumulative B-Spline parameterization enables the computation
of analytical time derivatives at any point in the spline. This allows us
to trivially synthesize accelerometer and gyroscope measurements, which
we can in turn use to form direct errors on observed measurements.

Another advantage of a continuous-time framework is in dealing with
rolling shutter cameras. Although the projective geometry of a rolling
shutter camera remains the same as that of a global shutter camera, every
line of the image is exposed for a different period, each one more delayed
than the last. When the camera is in motion, this can cause the image to
appear distorted and skewed (Figure 2a). Using a continuous-time model
for the motion of the camera, we are free to treat every line of the image
as its own exposure as shown in Figure 1.

Given generative models for visual and inertial data, we can solve for
spline and camera parameters in batch or over a window by minimizing

t1

t0

t2

⇢0

⇢1 ⇢2 t0

t1

t2 p2

p1

p0

p2

p1

p0

Figure 1: Rolling shutter cameras are easily modeled with continuous-
time SLAM. Landmarks observed at pixel locations pi are represented
by their inverse depth, ρi and time of measurement, ti. Each scanline
is effectively a single push-broom camera (left); such scanline-camera
measurements are captured over time, which defines the image returned
by the actual sensor (right).
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Figure 2: Results from simulated monocular rolling shutter experiment.
(a) Still from simulated sequence exhibiting large rolling shutter warp. (b)
Comparison of ground truth trajectory (red) against estimated trajectories
when modelling (blue) and not modelling (green) rolling shutter.

Figure 3: Example estimates computed for full-SLAM and self-
calibration including camera-to-IMU, IMU biases, gravity vector, camera
intrinsics (with distortion), 3D landmark locations and sensor trajectory.
Again, the structure and scale in these figures are accurately estimated
without any prior knowledge of the scene. This being our first experi-
mental analysis, full and robust front-end feature tracking has not been
completed, and the grid is only used to simplify data-association. This
still allows evaluation and demonstration of full SLAM and visual-inertial
self-calibration.

an objective function formed from the difference of measured to predicted
observations. By using a continuous-time formulation, reprojection errors
and inertial errors can be treated uniformly, weighted by their respective
information matrices computed from device specifications or calibration.

We have conducted experiments in both simulation and with real data
to evaluate our flexible continuous-time approach. We present sliding
window visual odometry results on a simulated monocular rolling shutter
dataset (Figure 2) and then continue by demonstrating our system on real
data for joint visual-inertial SLAM and self-calibration (Figure 3).
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