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Abstract

This paper deals with the detection of orthogonal vanishing points. The aim is to
efficiently cope with the clutter edges in real-life images and to determine the camera
orientation in the Manhattan world reliably. We are using a modified scheme of the
Cascaded Hough Transform where only one Hough space is accumulated – the space
of the vanishing points. The parameterization of the vanishing points – the “diamond
space” – is based on the PClines line parameterization and it is defined as a mapping of
the whole real projective plane to a finite space.

Our algorithm for detection of vanishing points operates directly on edgelets detected
by an edge detector, skipping the common step of grouping edges into straight lines or
line segments. This decreases the number of configuration parameters and reduces the
complexity of the algorithm. Evaluated on the York Urban DB, our algorithm yields
98.04 % success rate at 10◦ angular error tolerance, which outperforms comparable ex-
isting solutions.

Our parameterization of vanishing points is in all aspects linear; it involves no go-
niometric or other non-linear operations and thus it is suitable for implementation in
embedded chips and circuitry. The iterative search scheme allows for finding orthogonal
triplets of vanishing points with high accuracy and low computational costs. At the same
time, our approach can be used without the orthogonality constraint.

1 Introduction
Vanishing points are an important feature of most real-life images. In Manhattan worlds,
they can be used for camera orientation [1, 7], camera calibration [12], scene reconstruction
[6], clustering of scene edges for scene understanding [7] and other tasks [13]. At the same
time, the vanishing points tend to be very stable and supported by various parts of the scene
and their detection is thus robust against various distortions. Having the vanishing points
reliably and efficiently detected facilitates many other computer vision tasks.

Detection of vanishing points has a long history behind. Hough transform has been a
popular tool [19]; originally it used the Gauss sphere [2] and it was later bent in different
ways. A generalized linear Hough transform approach was proposed by Tuytelaars et al. [20]
as the Cascaded Hough Transform (CHT). Li et al. [14] used 1D Hough transform cascaded
in a different manner for separate detection of in-frame and distant vanishing points.
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(a) Input image (b) Extracted edges

(c) Diamond space (right: color coded contributions) (d) Color-coded edges

Figure 1: Detection of orthogonal vanishing points. Bottom row depicts the affiliation of
edges/contributions to different orthogonal VPs by color.

Bazin et al. [3] argue that approaches based on the Hough transform detect vanishing
points separately, failing to detect (optimal) triplets of orthogonal vanishing points which are
useful for explaining images of Manhattan worlds. Bazin et al. suggest to look in the vicinity
of an initial hypothesis described by three angles by exhaustive search or by RANSAC [4].
RANSAC and its modifications are popular for detection of vanishing points [4, 10, 15, 17].
Some works deal with infinite (i.e. ideal) vanishing points by separately treating finite and
infinite ones [9]. Another popular class of algorithms is based on EM algorithms [7, 18].

Is the Hough transform obsolete for finding orthogonal vanishing points? Does it have
to be inefficient and prone to uneven discretization errors? In this paper, we revisited the
vanishing point detection and we propose an algorithm for detection of orthogonal triplets of
vanishing points (Fig. 1). It is inspired by the CHT [20], modified so that only one limited
accumulation space is used throughout the whole process. Moreover, the parameterization of
lines (and consequent vanishing points) is linear: goniometric or other non-linear functions
are avoided by the algorithm. This parameterization one-to-one maps the real projective
plane serving as the plane of projection of the pinhole camera to a limited diamond-shaped
space with an acceptable mapping contraction.

Contrary to the majority of approaches, we accumulate image edgelets (edges with gra-
dients) directly, deliberately skipping the step of grouping them into line segments, which is
costly and sensitive to several configuration parameters. The diamond accumulator space is
used also in the second phase of the algorithm – searching for orthogonal triplets of vanish-
ing points. The search procedure we propose is converging very quickly (in the experiments,
a single step of the optimization procedure is used). Our method is evaluated on the York
Urban DB [7] and it outperforms the existing approaches in the detection rate. At the same
time, by avoiding the grouping into line segments and by fast convergence of the orthogo-
nalization algorithm, our approach calls for an efficient and real-time implementation.
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2 Proposed Real Projective Plane Mapping
Our algorithm builds upon a recent convenient parameterization of lines for the Hough trans-
form presented by Dubská et al. [8] and later proven to be usable for a modified CHT scheme
by Havel et al. [11]. This parameterization is a point-to-line-mapping (PTLM): each point
is mapped to a line in the dual space and vice versa. Even for a limited original space, the
dual space (Hough space) covers the whole real projective plane. Dubská et al. solved this
problem by attaching finite subspaces of two dual spaces one to another: the second space
has one of the parallel axes negated [8].

The main idea of the Cascaded Hough Transform (CHT) [20] is to first accumulate the
edge points in the dual space, then detect maxima (corresponding to lines) and accumulate
these maxima again into the next Hough space. Since the set of maxima of concurrent lines
lie on one line, in the second Hough space, their representations intersect in one point – the
vanishing point.

The PClines parameterization [8] uses a mapping between the real projective plane con-
taining the original image and the space of parallel coordinates for the detection of lines. In
the following text, subscript p is used for coordinate axes in the space of parallel coordinates
and subscript c for Cartesian coordinate axes. To distinguish between points and lines, the
representation [x,y,w] is used for a 2D point in homogeneous coordinates (in order to deal
with ideal points in infinity) and (a,b,c) denotes a line defined by equation ax+by+ c = 0.

In the parallel coordinates, point [x,y,1] is represented as a line intersecting the parallel
axes xp, yp at value x or y, respectively. An ideal point [x,y,0] is represented as a line
parallel to both the coordinate axes. The dual statement also holds for lines: an arbitrary line
is represented by exactly one point in the space of parallel coordinates. For easier referencing
to objects in the parallel coordinates, we define a second Cartesian coordinate system uc,vc
(see Fig. 2 middle, green axes). Let d be the distance between xp and yp. The mappings for
points and lines are as follows:

S p
d ([x,y,w]) = (−x+ y,−dw,dx),

S l
d((a,b,c)) = [db,−c,a+b].

(1)

In the spirit of the CHT, the second Hough transform can be applied, i.e. points are mapped
again to lines and lines to points. Let D be the distance between the parallel axes in the
second parallel space. The composition of mappings (1) is then:

SS p
dD([x,y,w]) = (S l

D ◦S
p
d )([x,y,w]) = [−dDw,−dx,−x+ y−dw], (2)

SS l
dD((a,b,c)) = (S p

D ◦S
l
d)((a,b,c)) = (db+ c,Da+Db,−dDb). (3)

Mappings SSdD are transformations of one infinite space to another infinite space [5]. In
the case of line detection, the infinite space can be replaced by two finite dual spaces [8, 20].
Dubská et al. [8] flip the yp axis, put it in −d distance and form a twisted T space along the
straight S space (1). Mapping to the T space is:

T p
d ([x,y,w]) = (x+ y,−dw,dx),

T l
d ((a,b,c)) = [db,−c,a−b].

(4)

The CHT based on the PClines parameterization can be done by using all four combinations
of the mappings. All four possible cascaded transformations for a single point using S and
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Figure 2: Two cascaded PClines transformations via the straight S space. left: Original
image space with points and lines. middle: The same objects in parallel coordinates. A
new Cartesian coordinate system is defined (green, uc,vc). right: Second transformation to
parallel coordinates up,vp.

T spaces are the following:

SS p
dD([x,y,w]) = (S l

D ◦S
p
d )([x,y,w]) = [−dDw,−dx,−x+ y−dw],

ST p
dD([x,y,w]) = (S l

D ◦T
p

d )([x,y,w]) = [−dDw,−dx,−x+ y+dw],

T S p
dD([x,y,w]) = (T l

D ◦S
p
d )([x,y,w]) = [−dDw,−dx,x+ y−dw],

T T p
dD([x,y,w]) = (T l

D ◦T
p

d )([x,y,w]) = [−dDw,−dx,x+ y+dw].

(5)

It should be noted that these four mappings transform the whole projective plane into a finite
space (composed of four finite parts, each for one transformation) – see Fig. 3(a).

Consider, for example, transformation (2) and points from quadrant IVc (Fig. 3(a)). A
regular point, i.e. P = [x,y,1], x≥ 0, y≤ 0, is transformed to SS p

dD(P) = [−dD,−dx,−x+
y− d]. Because d,D > 0 (distances between the parallel axes), the position of the point’s
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(a) Mapping of quadrants.
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(b) Arrangement of triangular subspaces.

Figure 3: Subspaces of the mapping. (a) left: Quadrants of the original infinite Cartesian
space. right: Quadrants of the PClines space (two attached spaces of parallel coordinates).
(b) left: After cascading two mappings, the target quadrants are bounded, triangular. right:
These triangular areas can be rearranged and attached one to another at edges which represent
identical points in the original space. The dashed lines stand for the ideal line of the complete
real projective plane (xc,yc space is infinite).
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image can be derived:

d,D > 0, x≥ 0⇒−dD < 0, −dx≤ 0
x≥ 0, y≤ 0, d > 0⇒−x+ y−d < 0

⇒ −dD
−x+ y−d

> 0

⇒ −dx
−x+ y−d

≥ 0.

(6)

This proves that all points from IVc are transformed into Ip quadrant by the SS trans-
formation. And what is more, all these points lie in a single half-plane defined by line
`b = (d,D,−dD) (the line passing through points [D,0] and [0,d]):

(d,D,−dD) ·
[
−dD

−x+ y−d
,
−dx

−x+ y−d
,1
]
=

−dDy
−x+ y−d

≤ 0. (7)

Ideal points P = [x,y,0], x ≥ 0, y ≤ 0 with images SS p
dD(P) = [0,−dx,−x+ y] lie on the

line segment between points [0,0] and [0,d].
To conclude, all points – both regular and ideal – from IVc quadrant are transformed

by SS to the intersection of Ip quadrant and the closed lower half-plane defined by line
dx+Dy−dD = 0. Proofs for mappings (5) are analogous. It should be only pointed out that
Ic quadrant is mapped to a part of IIIp quadrant, IIc to IIp and IIIc to IVp – see Fig. 3(a).

These four parts, each mapped by a different mapping (SS,ST ,T S or T T ) can be
attached because images of the axes xc,yc and the ideal line always lie on the borders of two
segments (Figure 3(b)). Therefore, point mappings between the original plane and the joined
diamond space are:

[x,y,w]o→ [−dDw,−dx,sgn(xy)x+ y+ sgn(y)dw]d (8)
[x,y,w]d → [Dy,sgn(x)dx+ sgn(y)Dy−dDw,x]o, (9)

where sgn stands for a non-zero signum function. However, in the joined space, the image of
a straight line is not a line anymore. The result of the mapping is a polyline whose number
of segments depends on the number of quadrants the line passes. The sequence of endpoints
defining the polyline is in Eq. (10). When a line passes through just two quadrants (vertical
lines, horizontal lines, lines through the origin), one segment always degenerates to a point
(i.e. two adjacent points from (10) are identical). Singular cases, lines x = 0, y = 0 and the
ideal line, are handled according to Fig. 3(b).

α = sgn(ab), β = sgn(bc), γ = sgn(ac)

(a,b,c)o→
[

αa
c+ γa

,
−αc

c+ γa

]
,

[
b

c+βb
,0
]
,

[
0,

b
a+αb

]
,

[
−αa

c+ γa
,

αc
c+ γa

] (10)

The target space (Fig. 3) has a diamond shape. In the further text, we will refer to the
particular accumulation space as the diamond space. It should be noted that in practical
implementations, the triangular quadrants can be rearranged in the computer memory so that
the space is a horizontal rectangle for better memory utilization.
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3 Detection of Orthogonal Vanishing Points
Let us recall that the previous section introduced a mapping which transforms an infinite
plane (including ideal points and the ideal line) to a bounded diamond space. This param-
eterization is per partes linear (a line or line segment is transformed to a polyline of three
or two segments) and it is defined by simple linear operations (10). This mapping was con-
structed by direct application of cascading (as in the CHT) on the PClines parameterization
[8]. Note that this mapping maps points of the original plane to points in the dual space.

We propose to directly apply this parameterization on short line segments – edgelets –
detected by a suitable detector in the input image (ellipse fitting to clusters of pixels is used
in the experiments). The input image is placed into the center of the projective plane and its
size is normalized so that it fits into a fixed interval around the origin (−µ,µ) (see Fig. 5
for an example). We deliberately skip the common step of grouping these edgelets into
more refined lines and accumulate evidence of edgelets directly into the diamond space. The
highest peak in the diamond space is the most voted vanishing point; edgelets contributing
to it are removed from the accumulation space and the second highest response is sought
for and the procedure is repeated in order to find more vanishing points (Fig. 1). By using
Eq. (9), each detected diamond space maximum is projected to the image plane; then, by
using the camera internal parameters, it is reprojected to the world coordinates v̄.

In a Manhattan world scenario, three projections of orthogonal vanishing points are of
interest. Three non-orthogonal candidates (v̄1, v̄2, v̄3) are found by using the above described
procedure (Fig. 4). An orthogonalized triplet (v̂1, v̂2, v̂3) is computed as:

v̂1 = v̄1

v̂2 = [v̄i]v̂1 , i ∈ {2,3} s.t. v̄i · [v̄i]v̂1 is maximal; [v]n = v− (v ·n)n
v̂3 = v̂1× v̂2

(11)

The Manhattan vanishing points (orthogonal triplet) are then found by optimization:

(v1,v2,v3) = argmin
v̇1⊥v̇2⊥v̇3

{
‖(v̇1, v̇2, v̇3) ,(v̄1, v̄2, v̄3)‖−α

(
h(v̇1)

h(v̄1)
+

h(v̇2)

h(v̄2)
+

h(v̇3)

h(v̄3)

)}
, (12)

where ‖(v̇1, v̇2, v̇3) ,(v̄1, v̄2, v̄3)‖ stands for the sum of angular differences between the van-
ishing points and the initial detections, h(vi) is the response from the diamond Hough space
and α is a balancing parameter; in our experiments α = 1. Note that all vanishing point
coordinates must be normalized.

The minimization (12) is done by iterative search, starting with three different initial
orthogonalized triplets of vanishing points (v̂1, v̂2, v̂3), produced by using different members

Figure 4: Two examples of the diamond accumulation space (best viewed on screen). red
circles: Non-orthogonal vanishing points (v̄1, v̄2, v̄3). blue crosses: Orthogonal triplet of
vanishing points. green dots: Ground truth vanishing points.
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Figure 5: Visualization of the accumulators (“pixels”) from the diamond space projected to
the image plane. Image normalization µ = 1.

of the original, non-orthogonal detection selected as the first vanishing point v̄1 in Eq. (11).
In the experiments below, only a single search iteration is performed; it turned out that one
iteration is enough for finding a sufficiently accurate solution.

4 Experimental Results
This section shows the results of measurements of the discretization accuracy of the accu-
mulation space (Sec. 4.1) and the performance of the detection of orthogonal triplets of
vanishing points on the York Urban Dataset [7] (Sec. 4.2). The MATLAB source codes and
evaluated data on the YUD can be downloaded from our website1.

4.1 Accumulator Space Sampling Error
Figure 5 shows the discretization of the accumulator space in the original image. The shape
of the accumulators or “pixels” is different in the x and y axis because the diamond space
was made with the y axis inverted – this is an arbitrary selection.

By choosing a different normalization of the input image and/or the resolution of the
accumulation space, it is possible to find suitable parameters for bounding the final dis-
cretization error. The discretization is defined by the space resolution, image normalization
and by the camera parameters. A meaningful error metric for an accumulator cell is the max
deviation between all vectors projected to the cell and the representative vector computed for
the given cell. This error is plotted in Fig. 6.

4.2 Vanishing Point Detection Accuracy
The detection accuracy is evaluated on the York Urban Database [7], consisting of 102 im-
ages, each with three orthogonal ground truth vanishing points. The parameters (space res-
olution, image normalization) were obtained from the training set (half of the DB) and the

1http://medusa.fit.vutbr.cz/pclines/
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Figure 6: Error of the accumulator space: d = D = 1, camera and image parameters from the
York Urban DB [7]. (a) Distribution of the angular error for a quarter of the diamond space
with resolution 320 and normalization µ = 1. (b) Dependence of average/maximal/minimal
error in the diamond space on the space resolution and image normalization. The space
resolution is critical for the average error and by using a different normalization it is possible
to bound the lower and upper error.

method [18] [9] [16] [15] [17] [10] ours
correct VP [%] 94.35 100? 80.7/84.6/79.5/69.3 99.3?? 90.03 93 88.04/98.04

avg. err [◦] 3.5 1.63 - - <3 - 1.87/1.41

Table 1: Detection rate at < 10◦ angular error tolerance in comparison with previous works.
For our method, the value for directly detected VPs (v̄1, v̄2, v̄3) are reported, followed by
the orthogonalized VPs according to Sec. 3 in bold. ? Column [9] should be omitted from
fair comparison because the authors seem to apply the tolerance on individual angles (pitch,
yaw, roll), not on the overall angular difference, which is the case of other works (and our
evaluation). ?? Column [15] should also be treated lightly because the authors feed the
detector only with edges user-annotated as belonging to one of the vanishing points (no
outliers), while other works are working with all the edges in the image, including clutter.

evaluation was done on the complete set in order to be comparable with previous works. We
used two means of evaluation popular in the literature: detection rate with 10◦ angular error
tolerance [9, 10, 15, 16, 17, 18], Table 1, and cumulative histogram of the count of correctly
recognized vanishing points based on the angular error tolerance [2, 13, 14], Figure 7.

5 Conclusions

We presented a new method for detecting orthogonal or non-orthogonal vanishing points in
real-world images. The method is based on the Cascaded Hough Transform, but the proce-
dure is modified so that there is only one accumulation space – the diamond space. This sim-
plifies the detection process and lowers the number of various thresholds and configuration
parameters; also, this parameterization is linear. Then, we proposed a quickly converging
iterative algorithm for detection of orthogonal triplets of vanishing points. This refinement
procedure works directly on the accumulated diamond space by simple sampling and it is
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Figure 7: Cumulative histogram of the number
of correctly detected vanishing points. Horizon-
tal axis: average angular error of the detected
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tection algorithm without the orthogonalization,
i.e. (v̄1, v̄2, v̄3) in Sec. 3. red: Our detection
after search for orthogonal triplet of vanishing
points, i.e. result of Eq. (12). GS, EM and
Casc1D are algorithms used in [2, 13, 14].

thus very efficient. The MATLAB implementation of our parameterization is publicly avail-
able together with our results.

We evaluated the proposed methods on the York Urban Dataset. The results show that
our algorithm outperforms existing solutions that are using the same evaluation methodol-
ogy. At the same time, it is computationally efficient – the algorithmic steps are simple, the
accumulation works directly with the edgelets (no clustering to line segments is used) and the
iterative search converges quickly (a single iteration on three alternative initial hypotheses
was used in the tests).

Since the algorithm is using a linear parameterization of the Hough space, it requires no
goniometric or other non-linear operations and it can be formulated in a fixed-point arith-
metic. It is thus predestined to be cheaply computed at interactive frame rates and to prevail
on embedded processors and programmable circuitry. We are working on its experimental
implementation for this class of devices. Another direction of undergoing exploration is in-
cluding depth data – since the simple and cluttered edgelets are able to accumulate to correct
vanishing points, normals of depth patches could be used in a similar manner.

Acknowledgements
This work was supported by the TACR grant TA01010931, by the CEZMSMT project IT4I - CZ
1.05/1.1.00/02.0070, and by project V3C, TE01020415. We would like to thank our colleagues: to Jan
Navratil for suggesting the name “diamond space” and Roman Juranek for help with MATLAB.

References
[1] Matthew E. Antone and Seth Teller. Automatic recovery of relative camera rotations

for urban scenes. In Proc. CVPR, 2000.

[2] Stephen T. Barnard. Interpreting perspective images. Artif. Intell., 21(4):435–462,
November 1983. ISSN 0004-3702. doi: 10.1016/S0004-3702(83)80021-6.

[3] J.-C. Bazin, C. Demonceaux, P. Vasseur, and I. Kweon. Rotation estimation and vanish-
ing point extraction by omnidirectional vision in urban environment. IJRR, 31, 2012.

[4] Jean-Charles Bazin and Marc Pollefeys. 3-line RANSAC for orthogonal vanishing
point detection. In Proc. IROS, 2012.

Citation
Citation
{Barnard} 1983

Citation
Citation
{Ko{²}eck{á} and Zhang} 2002

Citation
Citation
{Li, Peng, Ying, and Zha} 2012



10 DUBSKÁ, HEROUT: DETECTION OF ORTHOGONAL VANISHING POINTS

[5] Prabir Bhattacharya, Azriel Rosenfeld, and Isaac Weiss. Point-to-line mappings as
Hough transforms. Pattern Recognition Letters, 23(14):1705–1710, 2002.

[6] R. Cipolla, T. Drummond, and D. Robertson. Camera calibration from vanishing points
in images of architectural scenes. In Proc. BMVC, 1999.

[7] Patrick Denis, James H. Elder, and Francisco J. Estrada. Efficient edge-based methods
for estimating manhattan frames in urban imagery. In Proc. ECCV, 2008.
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