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Similar to the solutions of general gait recognition approaches, there are
two ways to handle the cross-speed gait recognition issues. The first ap-
proach is model-based approach which is to model the walking action
using static or dynamic body parameters [6]. The second class of cross-
speed gait recognition approach is model free approach, also known as
feature or appearance-based approach. It focuses on directly extracting
holistic gait features from gait sequences [4, 5]. Our proposed method,
Speed Invariant Gait Template (SIGT), belongs to the second category.

According to some recent studies, the walking action is considered
as residing on a manifold which is topologically equivalent to a unit cir-
cle [1]. Thus, we can format the gait feature extraction issue as a gait
manifold fitting issue. To address the cross-speed gait recognition issue,
Thin Plate Spline (TPS) kernel based RBF interpolation is used to fit the
gait manifold, since TPS has a desirable property [7] that it separates the
mapping coefficients into an affine component and a non-affine compo-
nent. And a natural assumption, that the affine component depicts the
manifold deformation caused by walking and the non-affine component
preserves the static features irrelevant to motion, can be given. Conse-
quently, the non-affine component is a gait feature which is robust to the
walking speed variation and we name this new feature Speed Invariant
Gait Template (SIGT) (see Figure 1).

We show in this paper how to use our proposed TPS-based mani-
fold model to extract SIGTs from the full cyclic gait silhouette sequences.
Firstly, The implicit function-based representation is used to represen-
t each gait silhouette, since this representation is robust to the noise and
silhouette fragmentation. Each pixel x of a gait silhouette is represented
as 0 when it is on the contour, as dc(x) when it is inside the contour and
as−dc(x) when it is outside the contour, where dc(x) denotes the distance
to the closest point on the contour.

Next, TPS Kernel based RBF interpolation is used to learn the map-
ping between the manifold embedding space and the represented gait s-
pace. Let Y = {yi ∈ Rl , i = 1, · · · ,N} be a gait sequence in the gait space
and X = {xi ∈ R2, i = 1, · · · ,N} be the corresponding points in the em-
bedding space. T = {t j ∈ R2, i = 1, · · · ,Nt} denotes Nt equally spaced
centers in the embedding space. We can solve for multiple TPS kernel in-
terpolants f k : R2→ R where k is the kth element (dimension) of the gait
vector (the vectorizated represented gait image) in the gait space and f k is
a RBF interpolant. We minimize a regularized risk criteria to learn non-
linear mapping from the embedding space to each individual dimension in
the gait space that satisfies yk

i = f k(xi). From the representer theorem [3],
such a function admits a representation of the form of linear combination
of basis functions around arbitrary points (centers). Therefore, to the kth
dimension of the input, the form of function f k(x) is as follows:

f k(x) = pk(x)+
Nt

∑
i=1

dk
i φ(||x− ti||2) (1)

where φ(u) = u2log(u) is a thin plate spline function and pk(x) = [1,xT ] ·
sk denotes the TPS smoothness term as a linear polynomial function with
coefficients sk. The matrix form of interpolation is as follows:

f (x) =W ·Φ(x) (2)

where W is a l× (Nt +3) matrix with the kth row [dk
1, · · · ,d

k
Nt ,s

kT
] and

Φ(x) is a vector that Φ(x) = [φ(||x− ti||2), · · · ,φ(||x− tNt ||2),1,xT ]. The
matrix W represents the mapping coefficients which are the l nonlinear
mappings from the embedding space to gait space. In order to make the
problem be well posed and insure the orthogonality, an additional con-
straint should be added:

Nt

∑
i=1

di p j(xi) = 0, j = 1,2,3 (3)
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Figure 1: The visualization of SIGTs, (a) The sparsely sampled gait sil-
houettes of half cycle from OU-ISIR Treadmill Dataset A, (b) The ex-
tracted SIGTs from the gait sequences.

where p j is the linear basis of the polynomial part p(x).
Thus, the mapping coefficients W can be obtained by directly solving

the following linear systems:(
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where C is a N ×Nt matrix with Ci j = φ(||xi− t j||2), i = 1, · · · ,N, j =
1, · · · ,Nt , Px is a N× 3 matrix with ith row [1,xi

T ], Pt is a Nt × 3 matrix
with ith row [1, tiT ]. D = [d1, · · · ,dNt ] is a l ×Nt coefficient matrix of
TPS based interpolants and S = [sT ] is a l× 3 coefficient matrix of the
smoothness term. According to the property of TPS, the static feature of
gait manifold, which is robust to the speed variation, is embedded in the
l×3 matrix S. Then, the proposed Speed invariant Gait Template (SIGT)
can be obtained by vectorizing this matrix.

Finally, in order to speed up the recognition and avoid the curse of
dimensionality, an recent Improved Locality Preserving Projections (LPP)
method named Globality-Locality Preserving Projections (GLPP) [2] is
applied to reduce the dimensionality of SIGT. Compared to the state-of-
the-arts methods such as LDA, PCA and LPP, GLPP obtains a much better
recognition performance via taking geometric structures of both samples
and classes into consideration.

The implementations of our method and related algorithms are de-
scribed in this paper in detail. Our conclusion is that a novel gait template
for cross-speed gait recognition is proposed and these gait templates are
extracted by fitting the gait manifold via TPS kernel based RBF interpo-
lation. The main contribution of this work is that it provides a natural way
to separate the dynamic features and static features and such separation is
very general to other computer vision issues.
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