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Abstract

A novel approach to learn a discriminative dictionary over atensor sparse model is
presented. A structural incoherence constraint between dictionary atoms from different
classes is introduced to promote discriminating information into the dictionary. The inco-
herence term encourages dictionary atoms to be as independent as possible. In addition,
we incorporate classification error into the objective function of dictionary learning. The
dictionary is learned in a supervised setting to make it useful for classification. A linear
multi-class classifier and the dictionary are learned simultaneously during the training
phase. Our approach is evaluated on three types of public databases, including texture,
digit, and face databases. Experimental results demonstrate the effectiveness of our ap-
proach.

1 Introduction

Sparse models have been successfully applied to many problems in image processing, com-
puter vision, and machine learning. Many algorithms [9, 25] have been proposed to learn an
over-complete and compact dictionary based on such models.In general, the input feature
representations to these approaches are based on traditional vector descriptors. As pointed
out in recent work [8, 17], vectorizing the original data structure, however, may destroy
some inherent ordering information in the data. One exampleare then× n symmetric posi-
tive semi-definite matrices. The kernel matrix in many popular kernelized machine learning
algorithms [14] is of this type. Another example is the diffusion tensor (a 3× 3 positive
definite matrix) which is used to represent voxels in medicalimaging. In computer vision,
the region covariance feature, introduced in [19], is an image descriptor that captures natural
correlations amongst multiple features. Hence, there has been growing interest in the de-
velopment of sparse coding for positive definite descriptors. In [20], the problem of sparse
coding within the space of symmetric positive definite matrices is tackled by embedding
Riemannian manifolds into kernel Hilbert spaces. [17] proposed tensor sparse coding on
positive definite matrices, which keeps descriptors in their original space and uses a set of
randomly selected training samples as the dictionary. It successfully extended sparse coding
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techniques to the space of positive definite matrices. However, little research has been done
to learn a discriminative and compact dictionary over such spaces.

We present a discriminative dictionary learning method fortensor sparse coding. Rather
than simply using a subset of region covariance descriptorsfor training images as the dictio-
nary [17], we learn a discriminative dictionary from the training set. A structural incoherence
term is introduced into the dictionary learning process to regularize the incoherence between
different sub-dictionaries, which increases the discriminativeness of the learned dictionary.
We further incorporate classification error into the objective function to make the learned
dictionary effective for classification tasks. Instead of learning multiple classifiers for each
pair of classes [11, 12, 22], a linear multi-class classifier can be easily obtained during the
training process. Unlike [18], which focuses on the reconstructive capability of a dictionary,
the dictionary learned by our approach has both good reconstruction and discrimination ca-
pabilities. Based on this learned high-quality dictionary, we are able to obtain discriminative
tensor sparse representations. Classification can be efficiently performed on these represen-
tations using the learned multi-classifier as it only involves matrix multiplication. The main
contributions of this paper are:

• A supervised learning approach to construct a discriminative and reconstructive dic-
tionary, which is used to obtain discriminative tensor sparse representations for classi-
fication.
• A method to effectively learn a compact discriminative dictionary and a universal

multi-class linear classifier (for all categories) simultaneously.
The paper is organized as follow. Section 2 gives a brief review of tensor sparse coding

and dictionary learning. Section 3 describes our approach to learn a discriminative and re-
constructive dictionary. Experimental results are presented in Section 4. Section 5 concludes
the paper.

1.1 Related Work

The region covariance descriptor was first proposed in [19] to encode an image region. The
descriptor is the covariance matrix of thed-dimensional feature vectors at each pixel within
a region. Given an imageI, let Φ define a function that extracts ad-dimensional feature
vectorzi from each pixeli ∈ I, i.e. Φ(I,xi,yi) = zi, wherezi ∈ Rd , and(xi,yi) is the location
of the ith pixel. Φ can be any mapping such as intensity, gradient, filter responses, etc.F is
theW ×H× d dimensional features extracted fromI, i.e. F(x,y) = Φ(I,x,y). For a given
rectangular regionR ⊂ F , {zk}k=1,2,...,N is the set ofd-dimensional features of allN points
inside the regionR. Then the region covariance descriptorCR ∈ Rd×d is computed by:

CR =
1

N−1

N

∑
k=1

(zk− µ)(zk− µ)T (1)

whereµ is the mean of all points. The region covariance descriptor fuses multiple features
which might be naturally correlated to describe a region or cuboid in images or videos. The
average filter during covariance computation also helps to filter out noise that corrupts indi-
vidual samples. It has become a popular descriptor for humandetection [20], tracking [20],
object detection [6, 18], action recognition [23], and pedestrian detection [21].

The tensor sparse model introduced in [17] learns a sparse representation over positive
definite matrices. In [6], the Stein kernel is introduced to embed the space of symmetric pos-
itive definite matrices into a kernel Hilbert space. These algorithms, however, take the entire
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training set as the dictionary. Tensor sparse coding with a large dictionary is computationally
expensive when the number of training samples is large. Hence learning compact dictionar-
ies for tensor sparse coding is desirable. In [18], a dictionary learning method is developed
based on the K-SVD algorithm [1]. However, the dictionary atoms are updated indepen-
dently, and the updating aims to reduce reconstruction errors. So the learned dictionary may
not perform well for classification tasks.

Compared to previous work, our approach learns a discriminative and reconstructive dic-
tionary effectively. With respect to this dictionary, discriminative sparse representations can
be obtained by solving a determinant maximization (MAXDET)problem. We simultane-
ously train a linear classifier along with dictionary learning, resulting in a learned dictionary
good for classification.

1.2 Notation

S
+
d denotes the space ofd×d symmetric positive semi-definite matrices, whileS

++
d refers to

the space of strictly positive definite matrices.A≻ 0 (A� 0)meansA is positive (semi)definite.
A ≻ B (A � B) indicate that(A−B) is positive (semi)definite. LetS = {Sl}N

l=1 denote the
data set,Sl ∈ S++

d . K is the number of categories. Then the dictionary isA = [A1
,A2

, ...,AK ].
Ai = [ai

1,a
i
2, ...,a

i
Ki
] denotes the sub-dictionary for classi. Ki is the number of atoms within

that sub-dictionary, and each dictionary atomai
t ∈ S

++
d . X = [x1,x2, ...,xN ] ∈ RK×N repre-

sents the sparse representation forS, with xl for Sl . Then the reconstructed dataŜ is:

Ŝ = X⊗A (2)

xl⊗A =
K

∑
i=1

xi
l⊗Ai =

K

∑
i=1

Ki

∑
t=1

xi
tla

i
t (3)

with xi
l denoting the representation coefficients forSl corresponding to sub-dictionaryAi,

andxi
tl is the coefficient corresponding to dictionary atomai

t .
The LogDet divergenceDld : S+d ×S

++
d → R+ is defined as:

Dld(X ,Y ) = tr(XY−1)− log det(XY−1)− n (4)

This measures the distance between two positive definite matrices [3, 17].

2 Tensor Sparse Coding and Dictionary Learning

In this section, we give a brief review of tensor sparse coding and algorithms for learning
an over-complete dictionary. Given a dictionaryA and a data setS, the tensor sparse coding
problem in [17] is formulated as:

minx≥0 Dld(X⊗A,S)+λ ||x||1 (5)

s.t. 0� X⊗A � S,

whereDld is the LogDet divergence defined in (4), andλ is the regularization parameter
inducing sparsity onX . The problem can be reduced to a MAXDET problem [17] and
solved by utilizing CVX [5].
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In [17], the dictionaryA was constructed by simply selecting a subset of the trainingset
for the classification setting. In [18], a dictionary from the training data is learned via mini-
mizing a reconstruction error. Each dictionary atom is updated based on a gradient descent
or an alternating formulation method. Minimizing the reconstruction error in problem (5),
however, may not be optimal for classification tasks. We willshow that by introducing struc-
tural incoherence into the objective function of dictionary learning, the discriminability of
the learned dictionary can be greatly improved. Meanwhile,by incorporating classification
error into the dictionary learning process, we can obtain a linear multi-class classifier jointly,
which will improve efficiency of classification performanceand reduce computation time.

3 Discriminative Tensor Sparse Coding

To enhance the discriminativeness of tensor sparse codes, we want to learn a reconstructive
and discriminative dictionary. Each sub-dictionary corresponds to one class. The dictionary
will be more discriminative if each sub-dictionary is much more representative and specific
to a particular class of images. Hence we explicitly encourage independence between dictio-
nary atoms from different sub-dictionaries. We subsequently leverage the supervised label
information of input signals into the optimization problem.

3.1 Structural Dictionary Learning 1 (SDL1)

The quality of the dictionary influences the discriminativeness of the tensor sparse represen-
tations. Updating each dictionary atoms separately does not result in sufficient discriminat-
ing information in the sub-dictionaries. Following [2, 15], we introduce structural incoher-
ence into sub-dictionary atoms. Incoherence will promote dictionary atoms from different
classes to be independent from each other; thus it leads to sparse and discriminating repre-
sentations for images.

Based on the above analysis, we add a structural incoherenceregularization term into
the objective function. Given a training data setS = {Sl}N

l=1, we will learn a dictionary
A = {Ai}K

i=1, with sub-dictionaryAi = [ai
1,a

i
2, ...,a

i
Ki
] for classi. The problem is formulated

as:

minA,X ΣN
l=1Dld(xl⊗A,Sl)+λ ||x||1+ηΣi6= j,s,t ||(aj

s)
T ai

t ||2F . (6)

s.t. xl ≥ 0 ∀l
ai

t , aj
s � 0 ∀i, t, j,s

0� xl⊗A� Sl ∀l

The first two terms are the reconstruction error and the sparsity regularization. The last term
sums up the Frobenius norms between every two dictionary atoms aj

s ,ai
t which belong to

different sub-dictionariesA j andAi. λ ,η are penalty parameters balancing reconstruction
error, sparsity, and dictionary structural incoherence.

3.2 Structural Dictionary Learning 2 (SDL2)

As pointed out in [9], the learned dictionary can be more adaptive to classification tasks when
minimizing the classification error in the objective function of dictionary learning. A linear
multi-classifier f (x;W ) = Wx is used for classification.W denotes the linear classifier’s
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parameters. Hence, the classification error can be explicitly included in the objective function
during the dictionary learning. The classifier will be learned through the training process, as
well. The objective function is formulated as below:

minA,X ,W ΣN
l=1Dld(xl⊗A,Sl)+λ ||x||1+ηΣi6= j,s,t ||(aj

s)
T ai

t ||2F + γ||H−WX ||22 (7)

s.t. xl ≥ 0 ∀l
ai

t , aj
s � 0 ∀i, t, j,s

0� xl⊗A� Sl ∀l

where the term||H−WX ||22 represents the classification error.H = [h1,h2, ...,hN ] ∈ RK×N

denotes the label matrix. The column vectorhi = [0,0, ...1...0,0]T ∈ RK is a label vector
for samplei. The position of 1 indicates its class index.γ controls the contribution of the
classification error regularization term in the optimization process.

3.3 Optimization

In this section, we only describe the optimization procedures for SDL2 here. To solve SDL1,
we utilize a similar procedure excluding the calculation ofclassifierW . The classifier will
be calculated directly through Equation (16) using the final resultX for SDL1.

The dictionary learning problem is convex in any one of the elements in the triple(A,X ,W )
when the others are fixed. Hence, the optimization can be divided into three subproblems:
(1) updating dictionary atoms with fixedX andW ; (2) solving the max determinant problem
with fixed A andW ; (3) computing a linear classifier with fixedX andA. If we setγ = 0
in subproblem (2), this is exactly the optimization procedure for problem (6). The complete
optimization is summarized in Algorithm1.

3.3.1 Dictionary Update with fixedW and X

Following [18], we use a steepest descent approach to update each dictionary atomai
t . With

fixedW andX , the objective function (7) can be rewritten as a function ofai
t as below:

f (ai
t) = ΣlDld(xl⊗A,Sl)+λ ||x||1+ηΣ j 6=iΣs||(aj

s)
T ai

t ||2F + γ||H−WX ||22 (8)

= Σltr(x
i
tla

i
tS
−1
l )− log detŜ j +ηΣ j 6=iΣstr((ai

t)
T aj

s(a
j
s)

T )ai
t +C, (9)

where C includes all those terms independent ofai
t . When updating one dictionary atom,

other atoms remain fixed. The gradient descent direction−∇ f (ai
t) is:

−∇ f (ai
t) = Σlx

i
tl(Ŝl

−1− S−1
l )−2ηΣ j 6=iΣs(aj

s)
T aj

sa
i
t (10)

SinceAi ∈ S
++
d , we need to ensure thatdai

t � 0. Meanwhile, fromŜ j � S j, we know that

Ŝ j
−1� S−1

j , yielding the first term in Equation (10) positive semidefinite. Thus the gradient

directiondai
t is given by:

dai
t =

{

Σlxi
tl(Ŝl

−1− S−1
l )−2ηΣ j 6=iΣs(a

j
s)

T aj
sai

t , ∇ f (ai
t)≤ 0

Σlxi
tl(Ŝl

−1− S−1
l ) , otherwise

(11)
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Combining all dictionary atoms together, the dictionary isupdated as below. The updat-
ing step sizeα ≥ 0 is determined by a line search technique.

dA = [dA1
,dA2

, ...,dAK ] = [dai
1,dai

2, ...,dai
Ki
] (12)

A ← A+α dA (13)

3.3.2 SolvingX with fixed A and W

With fixed A andW , the subproblem to solveX can be formulated as:

minX ΣN
l=1Dld(xl⊗A,Sl)+λ ||x||1+ γ||H−WX ||22 (14)

s.t. xl ≥ 0 ∀l, ai
t � 0 ∀i, t, 0� xl⊗A� Sl ∀l

This is a problem of sparse decomposition over positive definite matrices. As shown in [17],
this problem is convex and well-behaved. It falls into the general class of optimization
problems known as MAXDET problems. CVX [5] is used to solve this problem.

3.3.3 CalculatingW with fixed A and X

We use the multivariate ridge regression model [4, 24] to obtain the linear classifierW :

Ŵ = argmin
W
||H−WX ||22+λw||W ||22 (15)

whereH is the class label matrix ofX . Fixing X andA, the multi-class classifier can be
easily derived as:

W = HXT (XXT +λwI)−1 (16)

Algorithm 1 Structural Dictionary Learning

Input: DataS, and Parametersα, λ , η , γ
Output: A,W
Initialize: Initial DictionaryA, ClassifierW , εA = 10−3

while not converged,i≤ maxIterA do
fix A andW , solveX for MAXDET problem (14)
fix A andX , calculateW according to (16)
fix W andX , calculatedA according to (11)
updateA with (12) and (13)
check the convergence condition:
||S−X⊗A||∞ < εA

end while

3.3.4 Initialization

To initialize the dictionaryA, we randomly sampleA from the training data. The initializa-
tion of subdictionaryAi is a subset of training data belongs to classi. To initializeW , we
first solve problem (14) with γ = 0 using the initialized dictionary. ThenW is calculated
according to Equation (16).
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Figure 1: Texture classification results on the Brodatz dataset. Each group (five bars) indi-
cates the recognition accuracy for one test scenario. Each bar in a group corresponds to one
method.

3.4 Classification

After obtaining the dictionary, a tensor sparse representation Xtest for test dataStest is cal-
culated by solving Equation (14) with γ = 0. The representationxl for test samplel is
the l-th column inXtest . Using the classifierW , the label for test samplel is given by
k = argmaxk(s= Wyl) which corresponds to the index of the largest element in the class
label vectors.

4 Experiments
We evaluate our approach on three datasets: Brodatz texturedataset [16], USPS digital
dataset [7], and AR face dataset [13]. Our approach is compared with several state-of-the-art
algorithms including tensor sparse coding (TSC) [17], tensor sparse coding with dictionary
learing (TSCwD) [18], logE-SR [23] and Riemannian sparse representation (RSR) [6].

4.1 Texture Dataset
We follow the protocol in [6] and create mosaics under nine test scenarios with various
number of classes, including 5-textures (’5c’, ’5m’, ’5v’,’5v2’, ’5v3’), 10-textures (’10’,
’10v’), and 16-textures (’16c’, ’16v’). Spatial derivatives have been shown to be useful for
texture characterization in [17, 19]. The feature vectorF(x,y) for any pixel with gray scale

intensityI(x,y) is [I(x,y), | ∂ I
∂x |, | ∂ I

∂y |, | ∂
2I

∂x2 |, | ∂
2I

∂y2 |]. Each image is 256× 256, and 32× 32
blocks are cut out, yielding 64 data samples per image; a 5×5 region covariance descriptor is
computed for each sample. For each scenario, we randomly select 5 data samples as training
and the rest for testing. The random selection is repeated 10times.

Figure1 illustrates the classification results under different testing scenarios. We com-
pare SDL1 and SDL2 against logE-SR [23], TSC [17, 18], and RSR [6]. The average accu-
racy of SDL2 achieves the highest score on all test scenariosexcept for ’5v3’ and ’5c’. We
useα = 0.0001,λ = 0.001,η = 0.0001 in our experiments. However, our maximum classi-
fication results over 10 runs are comparable to the best scores. Figure2 shows an example
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Figure 2: An example of tensor sparse codes using different approaches. X axis indicates
the dimension of sparse codes, Y axis indicates the average tensor sparse codes for testing
samples (first 10 blocks) from the 2nd class in ’5v2’.

of tensor sparse codes on ’5v2’. The indices 6∼10 on the X-axis corresponds to the sub-
dictionary for the 2nd class. The coefficients highly peak within the 2nd class in our method.
We can see that SDL2 provides the most discriminative sparsecodes among all methods.

4.2 Digit Dataset

The USPS Dataset is a handwritten digit database containing9298 16×16 handwritten digit
images. We follow the protocol in [26], using the images of digits 1,2,3,4 and randomly
selecting 200 images for each category. The percentage of training samples ranges from
10% to 60%. For tensor sparse coding methods, a 9× 9 covariance descriptor is used to
describe a digit image, using the feature below:

F(x,y) = [I(x,y), |G0,0(x,y)|, ..., |G0,3(x,y)|, |G1,0(x,y)|, ..., |G1,3(x,y)|] (17)

whereI(x,y) is the intensity value at position(x,y) andGu,v(x,y) is the response of a 2D
Gabor wavelet [10] centered at(x,y) with orientationu and scalev:

Gu,v =
k2

v

4π2 ∑
t,s

e
− k2

v
8π2 ((x−s)2+(y−t)2)

(eikv((x−t)cos(θu)+(y−s)sin(θu))− e−2π2
) (18)

with kv =
1√

2v−1
andθu =

πu
4 .

Table1 summarizes classification performances using different approaches. The results
of kNN0, kNN1, NNLRS-graph [26] are copied from [26]. It can be seen that our discrim-
inative tensor sparse coding method is comparable to other methods and outperforms the
previously proposed dictionary learning method for tensorsparse coding [18].
Table 1: Classification error rates (%) using different approaches with different sampling
percentages

Database kNN0 kNN1 NNLRS [26] TSCwD [18] SDL1 SDL2

USPS (10%) 3.13 3.21 2.80 3.03 2.92 2.80
USPS (20%) 2.22 2.10 1.62 1.98 2.02 1.65
USPS (30%) 1.55 1.53 1.13 1.20 1.56 1.02
USPS (40%) 1.20 1.18 0.88 1.01 0.94 0.82
USPS (50%) 0.82 0.86 0.59 2.80 0.58 0.49
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Figure 3: (a) The first row shows sample images from the Brodatz texture dataset; the second
row shows sample images from the USPS dataset; the third row shows sample images from
the AR dataset. (b) Classification error for different dictionary learning algorithms. For this
experiment, we use 20 training images per class.

Table 2: Recognition rates on the AR face database

number of train samp. TSC [17] TSCwD [18] RSR [6] SDL1 SDL2

15 per person 70.2 78.6 81.4 80.0 82.3
18 per person 73.5 79.9 84.1 82.0 85.2
21 per person 75.8 80.8 85.7 83.2 86.1

In Figure3(b), we illustrate how classification errors decrease with the number of itera-
tions among dictionary learning methods. As expected, the error rate of SDL2 decreases the
most rapidly compared to the parallel-sum method introduced in [18] and SDL1.

4.3 Face Dataset

The AR face database includes over 4,000 color face images of126 individuals, 26 images
for each person in two sessions. The images are cropped to 27×20 and converted into gray
scale. The images from 10 subjects are used in our experiment. The images are convolved
with Gabor filters using Equation (18) with 8 orientationsθu =

πu
8 , u = 0,1, ...,7, and up to 5

scalesv = 0,1,2,3,4. We use the same features as [6] for face recognition. Each face image
is described with a 43×43 covariance descriptor using the following features:

F(x,y) = [I(x,y), x, y, |G0,0(x,y)|, ..., |G0,7(x,y)|, |G1,0(x,y)|, ..., |G4,7(x,y)|] (19)

whereI(x,y) is the intensity at(x,y) andGu,v is the response of a 2D Gabor wavelet.
We compare our methods with other covariance descriptor based methods including

TSC[17], TSC with dictionary update [18], and RSR [6]. The learned dictionary has 7
dictionary atoms per person. For each person, we randomly select 15, 18, 21 images for
training and the remainder for testing. Table2 summarizes the experimental results. SDL2
obtains the best performance in this experiment.

5 Conclusion
We introduced a discriminative dictionary learning approach for tensor sparse coding. The
introduction of structural incoherence between dictionary atoms from different sub-dictionaries



10 ZHANG et al: DISCRIMINATIVE TENSOR SPARSE CODING

encourages disparity among sub-dictionaries, thus enhancing discriminating ability of the
sparse representation. We further incorporate label information into the optimization prob-
lem so that the learned dictionary is more useful for classification. The SDL1, SDL2 prob-
lems can be formulated as MAXDET problems and the dictionaryatoms can be updated
through gradient descent. Experimental results demonstrate that our approach is robust and
effective.
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