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Abstract

A novel approach to learn a discriminative dictionary oveemsor sparse model is
presented. A structural incoherence constraint betwediodary atoms from different
classes is introduced to promote discriminating infororainto the dictionary. The inco-
herence term encourages dictionary atoms to be as indepessipossible. In addition,
we incorporate classification error into the objective tiorcof dictionary learning. The
dictionary is learned in a supervised setting to make ituldef classification. A linear
multi-class classifier and the dictionary are learned diamglously during the training
phase. Our approach is evaluated on three types of pubbbases, including texture,
digit, and face databases. Experimental results demoasha effectiveness of our ap-
proach.

1 Introduction

Sparse models have been successfully applied to many prsliteimage processing, com-
puter vision, and machine learning. Many algorithids2b] have been proposed to learn an
over-complete and compact dictionary based on such mobfetgeneral, the input feature
representations to these approaches are based on trabitemtor descriptors. As pointed
out in recent work §, 17], vectorizing the original data structure, however, magtaey
some inherent ordering information in the data. One exam@éhen x n symmetric posi-
tive semi-definite matrices. The kernel matrix in many papuikrnelized machine learning
algorithms [L4] is of this type. Another example is the diffusion tensor (a 3 positive
definite matrix) which is used to represent voxels in meditaging. In computer vision,
the region covariance feature, introducedlfl|[ is an image descriptor that captures natura
correlations amongst multiple features. Hence, there bas lgrowing interest in the de-
velopment of sparse coding for positive definite descriptdm [20], the problem of sparse
coding within the space of symmetric positive definite ntasiis tackled by embedding
Riemannian manifolds into kernel Hilbert spacesl7][proposed tensor sparse coding on
positive definite matrices, which keeps descriptors inrtbeginal space and uses a set of
randomly selected training samples as the dictionary.dt¢sssfully extended sparse coding
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techniques to the space of positive definite matrices. Hewdittle research has been done
to learn a discriminative and compact dictionary over sysEtss.

We present a discriminative dictionary learning methodénsor sparse coding. Rather
than simply using a subset of region covariance descrifdotsaining images as the dictio-
nary [L7], we learn a discriminative dictionary from the training.s& structural incoherence
term is introduced into the dictionary learning proces®tutarize the incoherence between
different sub-dictionaries, which increases the disanativeness of the learned dictionary.
We further incorporate classification error into the olijectunction to make the learned
dictionary effective for classification tasks. Insteadexdrhing multiple classifiers for each
pair of classes]1, 12, 22], a linear multi-class classifier can be easily obtainedrmdpthe
training process. Unlikel[8], which focuses on the reconstructive capability of a dicéiry,
the dictionary learned by our approach has both good recantistn and discrimination ca-
pabilities. Based on this learned high-quality dictionarg are able to obtain discriminative
tensor sparse representations. Classification can beseafficperformed on these represen-
tations using the learned multi-classifier as it only inegvnatrix multiplication. The main
contributions of this paper are:

e A supervised learning approach to construct a discrimieaind reconstructive dic-
tionary, which is used to obtain discriminative tensor spaepresentations for classi-
fication.

e A method to effectively learn a compact discriminative wioary and a universal
multi-class linear classifier (for all categories) simokausly.

The paper is organized as follow. Section 2 gives a brieexg\f tensor sparse coding
and dictionary learning. Section 3 describes our approadsetrn a discriminative and re-
constructive dictionary. Experimental results are preestim Section 4. Section 5 concludes
the paper.

1.1 Related Work

The region covariance descriptor was first proposed @htp encode an image region. The
descriptor is the covariance matrix of telimensional feature vectors at each pixel within
a region. Given an imagk let @ define a function that extractsdadimensional feature
vectorz from each pixel € 1, i.e. ®(1,x%,yi) = z, wherez € Rd, and(x, Vi) is the location
of theit" pixel. ® can be any mapping such as intensity, gradient, filter resgmyretcF is
theW x H x d dimensional features extracted frdmi.e. F(x,y) = ®(I,x,y). For a given
rectangular regioR C F, {z}x-12_n is the set ofd-dimensional features of aN points
inside the regiofR. Then the region covariance descripBarec R4*%is computed by:

4

Cr— Ni_lk (3 ) T 1)

wherep is the mean of all points. The region covariance descriptse$ multiple features
which might be naturally correlated to describe a regionutroid in images or videos. The
average filter during covariance computation also helpdtés fiut noise that corrupts indi-
vidual samples. It has become a popular descriptor for husegettion P(], tracking [20],
object detectiond, 18], action recognition23], and pedestrian detectiof]].
The tensor sparse model introduced 1][learns a sparse representation over positive

definite matrices. Ing], the Stein kernel is introduced to embed the space of synpets-
itive definite matrices into a kernel Hilbert space. Theg@athms, however, take the entire
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training set as the dictionary. Tensor sparse coding wisingeldictionary is computationally
expensive when the number of training samples is large. élEarning compact dictionar-
ies for tensor sparse coding is desirable. 1§ [a dictionary learning method is developed
based on the K-SVD algorithnl]. However, the dictionary atoms are updated indepen
dently, and the updating aims to reduce reconstructiom®r&o the learned dictionary may
not perform well for classification tasks.

Compared to previous work, our approach learns a discriim@and reconstructive dic-
tionary effectively. With respect to this dictionary, distinative sparse representations can
be obtained by solving a determinant maximization (MAXDEFpblem. We simultane-
ously train a linear classifier along with dictionary leagjresulting in a learned dictionary
good for classification.

1.2 Notation

S4 denotes the space df< d symmetric positive semi-definite matrices, wiijg* refers to
the space of strictly positive definite matricés- 0 (A= 0) meand s positive (semi)definite.
A B (A= B) indicate that/A— B) is positive (semi)definite. L= {S}}\, denote the
data set§ € S{*. K is the number of categories. Then the dictionaris [AY, AZ, ..., AX].
A= [al,az, ,aK] denotes the sub-dictionary for clas¥; is the number of atoms within
that sub-dictionary, and each dictionary atajre S . X = [x1,Xz,...,xn] € RN repre-
sents the sparse representationSawith x; for §. Then the reconstructed daas:

_ lelm iixﬂat ®

with xI denoting the representation coefficients $rcorresponding to sub- -dictiona#y,
andx;, is the coefficient corresponding to dictionary atejn
The LogDet divergencBq : S x S§* — R is defined as:

S= X®A 2
A

Dig(X,Y) =tr(XY~1) —logdet(XY~1) —n (4)

This measures the distance between two positive definitdaes({3, 17].

2 Tensor Sparse Coding and Dictionary Learning

In this section, we give a brief review of tensor sparse cg@ind algorithms for learning
an over-complete dictionary. Given a diction@and a data se$, the tensor sparse coding
problem in [L7] is formulated as:

Mink>o Dig(X®@A,S) +A|[X]|1 (5)
st. 0=<X®A=S

whereD\q is the LogDet divergence defined id)( andA is the regularization parameter
inducing sparsity orX. The problem can be reduced to a MAXDET problefr][and
solved by utilizing CVX f].



4 ZHANG et al: DISCRIMINATIVE TENSOR SPARSE CODING

In [17], the dictionaryA was constructed by simply selecting a subset of the traisdtg
for the classification setting. IrLf], a dictionary from the training data is learned via mini-
mizing a reconstruction error. Each dictionary atom is upddased on a gradient descent
or an alternating formulation method. Minimizing the restaction error in problems),
however, may not be optimal for classification tasks. We stibbw that by introducing struc-
tural incoherence into the objective function of diction&arning, the discriminability of
the learned dictionary can be greatly improved. Meanwhieincorporating classification
error into the dictionary learning process, we can obtaineal multi-class classifier jointly,
which will improve efficiency of classification performanaed reduce computation time.

3 Discriminative Tensor Sparse Coding

To enhance the discriminativeness of tensor sparse cogesam to learn a reconstructive
and discriminative dictionary. Each sub-dictionary cep@nds to one class. The dictionary
will be more discriminative if each sub-dictionary is muclma representative and specific
to a particular class of images. Hence we explicitly encgeiiadependence between dictio-
nary atoms from different sub-dictionaries. We subseduésierage the supervised label
information of input signals into the optimization problem

3.1 Structural Dictionary Learning 1 (SDL1)

The quality of the dictionary influences the discriminatiess of the tensor sparse represen-
tations. Updating each dictionary atoms separately doegesalt in sufficient discriminat-
ing information in the sub-dictionaries. Following, [15], we introduce structural incoher-
ence into sub-dictionary atoms. Incoherence will promaté@hary atoms from different
classes to be independent from each other; thus it leadsatesespnd discriminating repre-
sentations for images.

Based on the above analysis, we add a structural incoheregatarization term into
the objective function. Given a training data St {S},, we will learn a dictionary
A= {A}K |, with sub-dictionanA' = [a},a), ..., a ] for classi. The problem is formulated
as:

mina x S iDig(x ® A, S) +A[X|[1+ N Zizj el (8d) T A E (6)
st. x>0 Vi
a,al -0 Vit j,s
0=<x®A=S VI

The first two terms are the reconstruction error and the gpaegyularization. The last term
sums up the Frobenius norms between every two dictionamsg, al which belong to
different sub-dictionarieg andA'. A,n are penalty parameters balancing reconstruction
error, sparsity, and dictionary structural incoherence.

3.2 Structural Dictionary Learning 2 (SDL2)

As pointed out in @], the learned dictionary can be more adaptive to classificéasks when
minimizing the classification error in the objective fumctiof dictionary learning. A linear
multi-classifier f (x; W) = Wx is used for classificationW denotes the linear classifier’s
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parameters. Hence, the classification error can be expiiciiuded in the objective function
during the dictionary learning. The classifier will be leadrthrough the training process, as
well. The objective function is formulated as below:

Mina x w TN 1Dig(x @A S) +AIX] |1+ NZizj sel|(d) @ [E + vi[H —WX][5 (7)
St. x>0 Vi
a,al -0 Vit j,s
0=<x®A=<Sg Vi

where the term|H —WX||3 represents the classification errét.= [hy, hy, ....hy] € RN
denotes the label matrix. The column vectpe= [0,0,...1...0,0]" € R¥ is a label vector
for samplei. The position of 1 indicates its class indexcontrols the contribution of the
classification error regularization term in the optiminatprocess.

3.3 Optimization

In this section, we only describe the optimization proceddior SDL2 here. To solve SDL1,
we utilize a similar procedure excluding the calculatiorclafssifierWW. The classifier will
be calculated directly through Equatiotef using the final resulX for SDL1.

The dictionary learning problem is convex in any one of tieerents in the tripl€A, X, W)
when the others are fixed. Hence, the optimization can béetivinto three subproblems:
(1) updating dictionary atoms with fixeXlandW; (2) solving the max determinant problem
with fixed A andW; (3) computing a linear classifier with fixed andA. If we sety =0
in subproblem (2), this is exactly the optimization procedfor problem €). The complete
optimization is summarized in Algorithih

3.3.1 Dictionary Update with fixedW and X

Following [18], we use a steepest descent approach to update each d13z1mcboma{ With
fixedW andX, the objective function®) can be rewritten as a function af as below:

f@) =%Diax ®AS)+A|X][1+nZj4%/(al) a2 +viH-WX|Z (8)
=5tr(aS t) —log det§ + N Zetr((a) T al(al)")a} +C, (9)

where C includes all those terms independengiofWhen updating one dictionary atom,
other atoms remain fixed. The gradient descent directii (&) is:

~Of(@) =55 (§ '~ 7Y — 2% 4Zs(ad) Tald] (10)

SinceA € S§*, we need to ensure thdg = 0. Meanwhile, fromS; < Sj, we know that
SAjil = 571, yielding the first term in Equatiori() positive semidefinite. Thus the gradient
directionda! is given by:

. A1 B PR .
dal {Z|Xh &' -2nzjuzal)Talal, Of(@) <0 an

Z|><{|(§fl—$1), otherwise
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Combining all dictionary atoms together, the dictionaryjpslated as below. The updat-
ing step sizex > 0 is determined by a line search technique.

dA = [dAYdA?,...,dAK] = [da},da), ..., dal ] (12)
A <« AtadA (13)

3.3.2 SolvingX with fixed AandW
With fixed A andW, the subproblem to sol\ can be formulated as:

miny SLDia (4 @A S) +A|[x[]1+ yI[H —WX][3 (14)
st. X >0Vl, a=0Vit, 0=<x®A=<3V

This is a problem of sparse decomposition over positive definatrices. As shown iri[7],
this problem is convex and well-behaved. It falls into theeal class of optimization
problems known as MAXDET problems. CV%]is used to solve this problem.

3.3.3 CalculatingW with fixed A and X

We use the multivariate ridge regression modePH] to obtain the linear classifié:
W = argmin][H — WX |5+ AwlW|13 (15)

whereH is the class label matrix oX. Fixing X and A, the multi-class classifier can be
easily derived as:

W =HXT(XXT + A1)t (16)

Algorithm 1 Structural Dictionary Learning

Input: DataS, and Parameters, A, n, y
Output: AW
Initialize: Initial Dictionary A, ClassifielW, ea = 1073
while not converged, < maxiterA do
fix AandW, solveX for MAXDET problem (L4)
fix AandX, calculateN according to {6)
fix W andX, calculatedA according to {1)
updateA with (12) and (L3)
check the convergence condition:
[IS—=X®@A||o < €a
end while

3.3.4 |Initialization

To initialize the dictionaryA, we randomly samplé from the training data. The initializa-
tion of subdictionary; is a subset of training data belongs to clas3o initialize W, we
first solve problem 14) with y = 0 using the initialized dictionary. Thew is calculated
according to Equationl@).
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Figure 1: Texture classification results on the BrodatzsktaEach group (five bars) indi-
cates the recognition accuracy for one test scenario. Eacimla group corresponds to one
method.

3.4 Classification

After obtaining the dictionary, a tensor sparse represiemtes for test dataSey is cal-
culated by solving Equationlf) with y = 0. The representatior, for test sampld is
the I-th column inXeg. Using the classifielV, the label for test sampleis given by
k = argmax(s = Wy,) which corresponds to the index of the largest element in lhssc
label vectors.

4 Experiments

We evaluate our approach on three datasets: Brodatz tedaaset 16|, USPS digital
datasetT], and AR face datasel f]. Our approach is compared with several state-of-the-a
algorithms including tensor sparse coding (TSCJ]] tensor sparse coding with dictionary
learing (TSCwD) L8], logE-SR R3] and Riemannian sparse representation (RSR) [

4.1 Texture Dataset

We follow the protocol in §] and create mosaics under nine test scenarios with variot
number of classes, including 5-textures ('5¢’, '5m’, '5\8v2’, '5v3’), 10-textures ('10’,
'10v"), and 16-textures ('16c¢’, '16V’). Spatial derivatg have been shown to be useful for
texture characterization irLf, 19). The feature vectoF (x,y) for any pixel with gray scale
intensityl (x,y) is [1(x,y), |5, |51, |g—)2('2|, |§—§£|]. Each image is 256 256, and 32 32
blocks are cut out, yielding 64 data samples per image; & gegion covariance descriptor is
computed for each sample. For each scenario, we randorelst &etlata samples as training
and the rest for testing. The random selection is repeatéidnt3.

Figurel illustrates the classification results under differentitgsscenarios. We com-
pare SDL1 and SDL2 against logE-SR3[, TSC [17, 18], and RSR §]. The average accu-
racy of SDL2 achieves the highest score on all test scenexiospt for '5v3’ and '5¢’. We
usea = 0.0001,A =0.001 n = 0.0001 in our experiments. However, our maximum classi
fication results over 10 runs are comparable to the bestsceigure2 shows an example
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Figure 2: An example of tensor sparse codes using diffeqgmtaaches. X axis indicates
the dimension of sparse codes, Y axis indicates the aveeageit sparse codes for testing
samples (first 10 blocks) from the 2nd class in '5v2’.

of tensor sparse codes on '5v2’. The indicesl® on the X-axis corresponds to the sub-
dictionary for the 2nd class. The coefficients highly peathimithe 2nd class in our method.
We can see that SDL2 provides the most discriminative sgades among all methods.

4.2 Digit Dataset

The USPS Dataset is a handwritten digit database conta®2i9§ 16x 16 handwritten digit
images. We follow the protocol ir2p], using the images of digits 1,2,3,4 and randomly
selecting 200 images for each category. The percentagaiafrig samples ranges from
10% to 60%. For tensor sparse coding methodsxé@ovariance descriptor is used to
describe a digit image, using the feature below:

F(va) - [I (Xay)v |GO,O(X7y)|7 ) |GO,3(X7y)|7 |G1.,0(X7y)|7 R |G1.,3(X7y)|] (17)

wherel (x,y) is the intensity value at positiofx,y) andGyv(x,y) is the response of a 2D
Gabor wavelet]0] centered afx,y) with orientationu and scaler:

2 K o - ) )
Guy = % Eefg((x 9)2+(y-1)?) (elkv((x—t)cos(eu)Jr(y—s)sn(Qu)) _ e—an) (18)
5

with ky = \/% andg, = &
Table1l summarizes classification performances using differeptagrhes. The results

of KNNO, KNN1, NNLRS-graphZ6] are copied from26]. It can be seen that our discrim-

inative tensor sparse coding method is comparable to otle¢inads and outperforms the

previously proposed dictionary learning method for tersg@arse codingl[d].

Table 1: Classification error rates (%) using different apphes with different sampling

percentages

Database | KNNO | kNNI | NNLRS [26] [ TSCwD [1g] | SDL1 [ SDL2 |

USPS (10%)| 3.13 | 3.21 2.80 3.03 292 | 2.80
USPS (20%)| 2.22 | 2.10 1.62 1.98 2.02 | 1.65
USPS (30%) 1.55 | 1.53 1.13 1.20 156 | 1.02
USPS (40%) 1.20 | 1.18 0.88 1.01 0.94 | 0.82
USPS (50%)| 0.82 | 0.86 0.59 2.80 0.58 | 0.49
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4.5

Classification error rate(%)

Iterations

(a) Sample images (b) Classification error

Figure 3: (a) The first row shows sample images from the Bmt@ature dataset; the second
row shows sample images from the USPS dataset; the thirdirowsssample images from
the AR dataset. (b) Classification error for different diotry learning algorithms. For this
experiment, we use 20 training images per class.

Table 2: Recognition rates on the AR face database

| number of train samp| TSC[17 | TSCwD [1§] | RSR ] | SDL1 | SDL2 |

15 per person 70.2 78.6 81.4 80.0 | 82.3
18 per person 73.5 79.9 84.1 82.0 | 85.2
21 per person 75.8 80.8 85.7 83.2 | 86.1

In Figure3(b), we illustrate how classification errors decrease with tnalper of itera-
tions among dictionary learning methods. As expected, fitee eate of SDL2 decreases the
most rapidly compared to the parallel-sum method introduic¢18] and SDL1.

4.3 Face Dataset

The AR face database includes over 4,000 color face imag&atindividuals, 26 images
for each person in two sessions. The images are croppedt@@and converted into gray
scale. The images from 10 subjects are used in our experirbetimages are convolved
with Gabor filters using Equatiori §) with 8 orientation®, = &, u=0,1,...,7, and up to 5
scalesr =0,1,2,3,4. We use the same features ékfpr face recognition. Each face image
is described with a 48 43 covariance descriptor using the following features:

F(X’y) = [I(va)a X, Y, |G070(X7y)|7 ) |G077(Xay)|’ |Glyo(xay)|’ ey |G477(Xay)|] (19)

wherel (x,y) is the intensity atx,y) andGy is the response of a 2D Gabor wavelet.

We compare our methods with other covariance descriptoecbhasethods including
TSC[17], TSC with dictionary updatel|g], and RSR §]. The learned dictionary has 7
dictionary atoms per person. For each person, we randortdgtsts, 18, 21 images for
training and the remainder for testing. TaBlsummarizes the experimental results. SDL2
obtains the best performance in this experiment.

5 Conclusion

We introduced a discriminative dictionary learning apmtoéor tensor sparse coding. The
introduction of structural incoherence between dictigre@oms from different sub-dictionarie:
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encourages disparity among sub-dictionaries, thus emtngudéscriminating ability of the
sparse representation. We further incorporate label nmétion into the optimization prob-
lem so that the learned dictionary is more useful for classifon. The SDL1, SDL2 prob-
lems can be formulated as MAXDET problems and the dictiorsoms can be updated
through gradient descent. Experimental results demdedtrat our approach is robust and
effective.
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