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Matching methods based on RANSAC rely on having a small outlier rate.
This way, the probability of obtaining a correct minimal set of points is
high enough to be achieved in fixed time. If the percentage of outliers
increases, the number of RANSAC loops needed to obtain a correct set
of minimal points grows exponentially. We propose a matching algorithm
that performs robust matching under the presence of a large percentage of
outliers. Our approach is a generalization of the work in [1] to deal with
uncalibrated cameras and noisy 3D information.

We are given a reference model made up of M 3D points X = {xi},
with their 2D correspondences on a reference image, and a set of N 2D
points U = {u j} on an input image, acquired with an uncalibrated cam-
era. Let us denote by p a 6-dimensional vector, parameterizing the pose,
and let f be the unknown camera focal length. As the 3D-to-2D corre-
spondences are unknown, they need to be retrieved together with the pose
and focal length parameters.

minimize
p, f

M

∑
i=1

Inlier(‖Proj(xi;p, f )−Match(xi;U)‖) (1)

where Proj(xi;p, f ) returns the 2D perspective projection ũi of a 3D point
xi given the pose and focal length parameters; Match(xi;U) returns the
u j ∈ U that is closest to ũi; and

Inlier(d)
{

d if d < Max_distance_inlier
Penalty_outlier otherwise

is a function that penalizes points whose reprojection error is above a
Max_distance_inlier threshold to avoid local minima.

We build a hyper-box in the 6-dimensional pose space using the pose
priors, which is then subsampled using Montecarlo. Expectation Maxi-
mization is run over these samples to compute the Np Gaussian priors on
the pose, defined by a set of mean poses pk, k = 1, . . . ,Np, and a set of
6×6 covariance matrices Σ

p
k . The range of feasible focal lengths, is split

into N f Gaussian priors, defined by mean values fl and the corresponding
one-dimensional variances σ

f
l , l = 1, . . . ,N f .

Our approach lets us handle uncertain 3D models, such as those ob-
tained from a Kinect camera Fig. 1. Each 3D model point xi is assigned a
covariance Σx

i , computed considering the depth variations of their neigh-
boring points. Those points with larger uncertainties will have less weight
in the computation of the solution. We also assign an uncertainty Σu

j to
each 2D measurement. Given the sets X and U , the pose and focal length
priors, and the 3D and 2D uncertainties, we proceed to the optimization
of Eq. 1 by progressively exploring each pair of priors {pk,Σ

p
k};{ fl ,Σ

f
l }.

To limit the number of potential 2D match candidates for each 3D point
xi, we project them onto the image plane and compute the uncertainty in
the projection assuming independent contribution from all three sources:
3D point uncertainty, pose uncertainty, and focal length uncertainty. The
result is a Gaussian distribution with mean ũi and covariance Σũ

i :

ũi = Proj(xi;pk, fl)

Σ
ũ
i = JxΣ

x
i J>x +JpΣ

p
k J>p +J f σ

f
l J>f , (2)

where Jg =
∂Proj(xi;pk , fl)

∂g is the Jacobian of the projection function with
respect to each of the uncertain parameters g = {x,p, f}. Using the Gaus-
sian distribution {ũi,Σ

ũ
i }, we can define a search region for the point xi,

and consider as potential candidates PC(xi) all points u j ∈ U whose Ma-
halanobis distance is below a threshold Max_Mah, i.e:

PC(xi) =
{

u j ∈ U s.t. (u j− ũi)
>(Σũ

i )
−1(u j− ũi)< Max_Mah2

}
∪{ /0} (3)

where /0 denotes the possibility that xi is in fact an outlier and does not
have a 2D image correspondence.

This work has been partially funded by Spanish Ministry of Economy and Competitiveness
under project PAU+ DPI2011-27510; by the EU project ARCAS FP7-ICT-2011-28761 and by
the ERA-Net CHISTERA project VISEN.

Figure 1: Up Left: We detect the uncertain regions –shown in red– com-
puting depth covariances within local neighborhoods. We define a search
region to limit the number of candidates Up Right: Search region ob-
tained after first projection of the three terms of Eq. 2 independently. Bot-
tom: Refinement of the search space, after establishing correspondences.

Once we have defined the set of potential 2D candidates for all the
3D points, we start a hypothesize and test strategy. After hypotheses have
been made, we use a Kalman filter formulation to shrink the size of the
Gaussian regions associated to the pose and focal length, to further reduce
and guide the set of potential candidates in each iteration Fig. 1. We
initialize this step choosing the least ambiguous point

x∗i = argmin
xi∈X

|PC(xi)| , (4)

i.e, the 3D point with the lowest number of potential candidates. In doing
so we start with a 3D point with low uncertainty, since these are the ones
with smaller search regions for potential matches, in the Mahalanobis
sense. We then hypothesize the match {x∗i ,u∗j}, where u∗j is the 2D candi-
date within PC(x∗i ) that is closest to ũ∗i in terms of Mahalanobis distance.
We then use standard Kalman filter equations to update the pose and focal
length and reduce their associated covariances:

p+
k = pk +Kp(u∗j − ũ∗i ) f+l = fl +K f (u∗j − ũ∗i )

Σ
p,+
k = (I−KpJp)Σ

p
k σ

f ,+
l = (1−K f J f )σ

f
l

.

This process is repeated until the Kalman update terms become neg-
ligible, usually in less than five iterations. Upon convergence, we project
the remaining 3D points onto the image and match them to the nearest
2D feature point. 3D points whose nearest neighbor distance is larger
than Max_distance_inlier are classified as outliers. Using both the inlier
and outliers points, we compute the error of Eq. 1 and stop the algorithm
for the current prior set {pk,Σ

p
k};{ fl ,Σ

f
l } if the error falls below a given

threshold. If not, we backtrack through the list of 3D-to-2D matches to
change the assignments and repeat the guided search and refinement pro-
cess. When no more assignments are available, we repeat the process with
a different pose and focal length prior.

By progressively exploring these priors we are able to efficiently prune
the potential number of 3D-to-2D matches, while reducing the uncertainty
of the pose and focal length estimates. The method is shown to be highly
resilient to clutter and noise on the image features and in the 3D model.
The latter is especially suited for dealing with 3D models obtained from
noisy range sensors, such as the Kinect or Time of Flight cameras.
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