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Abstract

In this paper we propose an efficient method for the recognition of long and com-
plex action streams. First, we design a new motion feature flow descriptor by composing
low-level local features. Then a new data embedding method is developed in order to
represent the motion flow as an one-dimensional sequence, whilst preserving useful mo-
tion information for recognition. Finally attentional motion spots (AMSs) are defined
to automatically detect meaningful motion changes from the embedded one-dimensional
sequence. An unsupervised learning strategy based on expectation maximization and a
weighted Gaussian mixture model is then applied to the AMSs for each action class, re-
sulting in an action representation which we refer to as Action Chart. The Action Chart
is then used efficiently for recognizing each action class. Through comparison with the
state-of-the-art methods, experimental results show that the Action Chart gives promis-
ing recognition performance with low computational load and can be used for abstracting
long video sequences.

1 Introduction

Action recognition has been widely studied for decades and there are many successful ap-
proaches to recognize relatively simple actions [13]. Recently, more realistic and complex
activity recognition tasks have been dealt with, such as internet videos [25], surveillance
videos [6], human interactions [13, 22], group activities [13] and temporally composed ac-
tion sequences [19]. However, the current status of the research on complex activities is in
its initial phase and far from the recognition ability of human. In our work, we are inter-
ested in recognizing temporally very long, complex and diverse action streams. Examples
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of such action streams are pop dances, pantomimes, monodramas, and cooking. Reliable
and efficient recognition methods of this kind of complex action streams can be useful for
various tasks, such as complex activity categorization, long video abstraction and similar
activity-based video retrieval in YouTube.

To deal with the long and complex action streams, we need an efficient abstraction pro-
cedure from low level feature extraction to high level classification. The existing research
related with this purpose includes motion feature extraction, motion segmentation, and ac-
tion classification. As for the motion feature extraction, low-level local feature descriptors,
such as HoG/HoF [16] and cuboids [5] can represent local motion changes, but they can not
imply temporal ordering and arrangement of features in the action sequence [19]. Global
spatio-temporal templates such as spatio-temporal shapes [1] and motion history [30] have
been proposed to contain such temporal ordering of motions and represent human body pose
changes along a temporal sequence. Fathi ef al. [7] proposed mid-level motion features
which are built from low-level optical flow information by a learning method. Sun et al. [24]
proposed a local descriptor and holistic feature fusion method. These methods contain more
motion information than local features, but they are not appropriate for very long action se-
quences since they require extensive memory and high computational cost. As for motion
segmentation, zero-velocity based segmentation methods [21, 29, 30] have been proposed
using the zero-velocity or zero-crossing points of the motion feature stream. These meth-
ods would be reluctant to be applied to long sequences because even small noises result in
many false segments. As for action recognition, the dynamic time warping (DTW) algorithm
and its variations [4, 12, 13] are successfully used for recognizing action classes. However
the DTW based algorithms take polynomial time and memory complexity for finding the
optimal nonlinear match between two feature flows. In addition, probabilistic state transi-
tion models, such as Hidden semi-Markov Models (HSMMs) [18] and Conditional Random
Fields (CRFs) [20], have been used for modeling temporal structure, and [19, 25] modeled
the temporal structure using latent SVM. However, it is hard to determine the number of
atomic actions and the action states ahead in activity streams. Also too much computation
is required to optimize each temporal model, so they are not appropriate for long action
sequences.

In this paper, we propose a pipelined motion-information embedding structure from a
high dimensional local feature flow to a low dimensional attentional motion spot flow in
order to recognize long and complex action streams efficiently. Each step of the proposed
method is focused on extracting distinctive motion information and filtering out noise. In
order to reduce high dimensional action video sequences (>640x480x6000 frames) into sim-
ple representations while retaining the necessary information, we propose a new composite
motion feature generation method by combining various conventional low-level local fea-
tures. The composite features characterize local, holistic, and sequential motion changes
with small memories. The 21-dimensional composite feature sequences are embedded into
one-dimensional feature sequences with preserving motion characteristics by proposing a
hierarchical embedding method.

The one-dimensional embedded feature sequence is utilized to catch distinctive motions.
The distinctive motion instances are referred to as attentional motion spots (AMSs), which
are automatically determined in our scheme. The AMSs appear in similar feature space-time
locations for the same activity classes. We model the distribution of AMSs as a weighted
Gaussian mixture model using expectation maximization (EM) in embedded feature space-
temporal domain. The sketch of this model looks like a music chart, thus we name our
representation as Action Chart, which is used for action class recognition. In order to test the
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Figure 1: Overall scheme of building Action Chart

validity of our method, we have built a new dataset composed of various dancing sequences,
which are difficult to be discriminated by the existing methods. Experimental results show
that our method has good recognition performance with low computational complexity.

2 Proposed Method

The proposed method is composed of four steps: (1) composite motion feature flow gen-
eration using low-level local features, (2) hierarchical embedding of the feature flow into
1-dimensional (1-D) feature sequence, (3) AMS selection in the 1-D sequence, and (4) ac-
tivity modeling and recognition using the AMSs. Figure 2 shows an overall scheme of the
proposed method.

Composite Motion Feature Flow: As for the first step, the composite motion features
are newly defined in this subsection by manipulating the low-level local feature information.
The composite motion features extracted in each frame form a temporally sequential flow
through the whole video frames, referred to as composite motion feature flow (CMFF).

As for the low-level local features to build CMFF, we use both the Gabor filtering de-
tector [5] and the Harris-3D feature point detector with HoG/HoF descriptor [15]. The two
detectors behave differently having their own strong points, and we use the two features
together to take advantage of them both. As shown in [28], the Gabor filter detector [5]
finds more features than Harris-3D [15], and filter responses for each feature point are avail-
able. Harris-3D detector with HoG/HoF descriptor has been shown to give good recognition
performance for atomic actions.

The low-level local feature points are detected in a stack of images denoted by I =
{I(x,y,t)|t = 1,...,N}. Feature point sets detected by the Gabor filter detector [5] are repre-
sented by {P(1),...,P(N)} and each P(t) contains not only feature locations p, and p, but
also filter response values r (i.e. P(r) = {pi(t), pi(t),r'(t)|0 < i < n,(r)} where n,(z) is
the number of features detected at time ¢ ). In addition, the well-known bag-of-words ap-
proach is applied to the other local features which are detected by Harris-3D and described
by HoG/HoF descriptor [15]. The descriptor codebook is generated by k-means clustering,
and we set k as 1000 in the experiments. h(z) is the normalized histogram of codebook
memberships obtained by applying the codebook to the 100 frames centered at time ¢.

The CMFF (M = {M(t)|t = 1,...,N}) is composed of holistic (M) and local (M)
motion features. The holistic motion feature My is composed of five measurements; motion
intensity (m;), motion extent (mp), motion speed (mg), motion change (m¢) and motion di-
versity (mp). The motion intensity, extent, and speed represent quantitative motion property,
and the change and diversity reflect qualitative motion property. At each ¢ frame, the five
measurements are obtained independently as follows:

e Motion intensity m;(¢): The Gabor filter detector [5] finds pixels whose intensities
have been changed by motion, so the number of detected feature points is proportional
to motion intensity. We measure the motion intensity as m; (t) = n,(z).
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Figure 2: Local motion feature M.

e Motion extent mz(¢): Motion extent measures how widely current motion is occur-
ring in the image space, and is measured by the spatial distribution of features: a norm

of standard deviation of feature locations as mg(t) = (- l(t) {xr (lt)( PLt) — (1)) +
p

n i 1 n i n i
£ (P (0) — 1 (0)21)F, where uy(e) = 1 V) pie) and g (1) = S5 £V 1),

e Motion speed mg(¢): The Gabor filter detector [5] gives strong responses to motions
with a similar period of the filter. On the other hand, much faster or slower motion
induce small responses. We set the filter period as 15 frames/sec, which means waving
hands twice in a second (in 30 FPS video) will give the strongest response. However,
general human motions are not faster than this, so we assume that small responses are
only caused by slower motions than the period. So the motion speed will be propor-
tional to filter response. We measure the motion speed of current frame by sum of
filter response values as ms(t) = Y,” (lt) ri(t).

e Motion change mc(r): Motion change measures how much current short-time motion
(centered at frame ¢) is changed comparing to the previous short-time motion (centered
at frame 7 — 1). The codebook histogram, A(t), describes a short-time (100 frames)
motion as a vector [15, 28]. So we measure the motion changes by chi-square distance

R(t=1)—h(1))?
between h(z — 1) and A(t) as mc(t) = x2(h(t —1),h(t)) = Y&, %

e Motion diversity mp(¢): Having many non-zero bins in the histogram, A(¢), imply
that many codebook words were used when obtaining A(t), thus the motion at time 7 is
composed of diverse local motions. So the non-zero codebook diversity is measured
by the entropy of () as mp(t) = — Y5 hi(t)logh(t).

Each measurement is a one-dimensional data sequence. By concatenating the five mea-
surements My (t) = [my,mg,mg,mc,mp], the holistic motion feature My becomes a five-
dimensional data sequence (Mpy € R>*M).

The local motion feature (M (¢) € R'®) represents the relative location distributions of
local feature points, p, ), using a concentric 16-bin histogram method as shown in Figure 2.
We place the center of the concentric circular bin at an estimated center of human body, and
set a radius of the circle is the half of human height. The center position and the height
can be estimated using foreground information or the human detection algorithm of Wang
and Suter [29]. In this paper, we estimate the values using the local features’ locational
information of the previous 100 frames. A mean value of the feature locations is estimated
as the center, and a mean of 100 maximum distances from the center is estimated as the
radius. The estimated values are recalculated for each frame.

Finally, we compose the CMFF by concatenating the holistic and local motion features;
M(t) = [Mu (1), ML) = [mr(0),me 1), ms (6), me(0)mp(0),m 1 ()T (M1)€ R,
The measured raw data flow is too peaky because of noise, so we smooth the data flow using
local polynomial regression fitting [3] with a low degree of smoothing (span=0.03).
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Figure 3: Concept of the proposed HLDE and the embedded data sequences of “Gee"” by
SNSD. Different color implies different people.

Hierarchical Low Dimensional Embedding: To avoid the curse of dimensionality
in analyzing motion streams, it is necessary for the CMFF M to be embedded to a lower
dimensional space. However M consists of two different information groups; Mg and M.
Each dimension of My implies independent and distinctive motion information, whilst the
16 dimensions of M, represent only one motion information as a combination. In other
words, the importance of each dimension is different.

To handle this problem, we propose a hierarchical low dimensional embedding (HLDE)
method. First, we embed the five dimensional holistic feature vectors, My, onto a two-
dimensional space, U = [u1,u3]” using principal component analysis (PCA). We then simul-
taneously apply mean and standard deviation distance embedding (MSDE) [11] to reduce the
local feature vectors M, having 16 dimensions into two-dimensional vectors V = [vy,v;]”.
Then, we perform PCA again on the four-dimensional vectors, W = [U; V] = [u1,u2,v1,v2]7,
reducing it to two-dimensional feature vectors, X = [x; ,xz]T, as shown in Figure 3.

The proposed embedding method is aimed to reduce dimension while preserving mean-
ingful and useful motion information. We measured how much motion information is pre-
served through each embedding step. We consider the amount of information retained in the
component and auto-correlation among different actors in the same class. As a result, we
choose only x; for the final action recognition (i.e. X = x1). Because the x; includes most
motion information (83.0% avg.) of actions and shows the highest auto-correlation value for
the same class (32.9 times more than x;).

Attentional Motion Spot Selection: Psychological study [31] reports that segmentation
of ongoing activity into meaningful actions is essential for perception and small memory.
The segmentation is strongly related to motion changes [31]. By mimicking the human
perception mechanism, we propose a method to catch and focus on distinctive instances
along the motion feature flow X. The motion feature flow X is a sequential data X = {x(¢)|r =
1...N} where x(¢) is chosen by the first principal component x; obtained in HLDE. We define
the distinctive instances as attentional motion spot (AMS), and we use velocity (the first
derivative) of X to find the AMS, which is similar to the human mechanism of using motion
changes as a clue for segmentation. We define a zero-velocity points set Z = {z1,22,...} =
{t|Ax(t) = x(t + 1) —x(¢) = 0} and its convexity index & (t) as

1 A%(n) <0
é(t)_{l A%x(t) >0, %

where A%x(t) = Ax(t) — Ax(t — 1). The number of zero-velocity points is determined auto-
matically. To avoid the false detection problem that other zero-velocity based methods [21,
29, 30] suffer from, we introduce an attention measure 7 at j* zero-velocity point z ; defined

* x(zj) —x(zj-1)

Zj—Zj-1

x(zj1) —x(z5)
Zj41— %)

+

n(z)j) = )
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Figure 4: Illustration of AMS selection and Action Chart generation.

The 7 is used for filtering out noisy zero-velocity points by thresholding. Finally, we find
an attentional point set T = {71, 7,...,T,} = {zj|n(z;) > €} (¢ is 0.005 in the experi-
ments) as shown in the first chart of Figure 4. n is the number of attentional points de-
termined automatically. As shown in the second chart of Figure 4, the i'* AMS y; is com-
posed of two components; the temporal location, 7;, and its corresponding feature value,
x(t;), multiplied by convexity index &(7;) i.e. y; = [7;,x(7:)&(7;)]7. For each action class
c€1...Candeach actor s € 1...5 (S¢is a number of actors in action class ¢), we define AMS
set as ¥(©9) = [ygc’s>, ...]” and total AMS set as Y¢ = [Y(1) . y(©5))T which contains 2-
dimensional random vector. Each motion stream X (%) is temporally aligned and normalized
using DTW [27] in a preprocessing step. Then, each AMS set, Y (%), of each motion stream
is generated independently.
Action Chart Generation and Recognition: We assume that each Y¢ follows a weighted

Gaussian mixture model (GMM) distribution in the feature space-time domain. The proba-
bility density function can then be written as

p(Y°|0°) = Z ¢ p(Y165), 3)

m=1
where of, ... w[fr‘ (wf, >0,m=1,...,k° and):k(' | Oy = 1) are the weights of each compo-
nent, each 6, is a set of Gaussran parameters = {ug,x¢} defining m™ component, and

0= {6;,...,0,f,..., 0 }. We define the ®C as Action Chart of action class c. In Fig-
ure 5, each component of ®° is represented as a shaded ellipse located at i, with size Xf,.
The darkness of each ellipse is proportional to corresponding weight wj,

To estimate each @¢, the expectation maximization (EM) algorithm is used. However, the
basic EM algorithm has two major weaknesses; rough initialization can produce singularity
and the user has to set the number of components. In order to avoid the singularity problem,
we set all the covariance matrices of each action class to be equal (i.e. 65 = {u5,Z}), and
we adopt the Figueiredo and Jain [8] algorithm for unsupervised parameter estimation. So,
the component number of each action class (k°) is adaptively selected as shown in Figure 5.

The class of the test action stream X" is determined through maximum log-likelihood.
The AMS set of X' is obtained and represented as Y’ = {y|*', ..., y/<%, }. The class recog-
nition is performed by matching the Y’*' and the trained Action Chart ®° one by one,

rmt levt

logp(Ytest|®C) _ lognp est|®c ZlOngCN est|'u§1’20) (4)

¢ = argmax {logp(Y’”‘\@‘)}. (5)
c
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Figure 5: Generated Action Charts for the Pop-Dance dataset.

B

Figure 6: Sample frames of Pop-Dance dataset (Gangnam Style) Even people are dancing
the same part of dance, they look different.

3 Experimental Results

We implemented our algorithm and the method by Niebles et al. [19] in Matlab for simula-
tion with Intel Core i7 3.40GHz processor and 16.0GB RAM. We used the binaries provided
by [15] to extract Harris-3D feature point and the HoG/HoF feature descriptors, and Mat-
lab code for Gabor filter based feature detector were provided by the author of [5]. The
VLFeat [26] and LIBSVM [2] libraries were used for the bag-of-words codebook and SVM.

Pop-Dance Dataset: Well-known action datasets such as KTH [23], Weizmann [1] and
HMDBSI1 [14] are relatively short and contain only one action in a video clip. Also, the
number of atomic motions of the Olympic Sports dataset [19] is still small (3 to 5) and the
motions are relatively simple. Therefore, they are not appropriate for evaluating long and
complex action sequence recognition algorithms.

We built a new dataset which contains motion sequences of people dancing following
choreographies of pop songs. The dataset is composed of video clips downloaded from
YouTube. Each person in the dataset dances differently in his/her own style to the same
music. Also the dance motions show large variations depending on camera view point, hu-
man scale, appearance, clothes, shadow and illumination conditions as shown in Figure 6.
The dataset contains 10 dances: “You and 1"-1U, “Goodbye Baby"-MissA, “Alone"-Sistar,
“Twinkle"-TTS, “Be My Baby"-Wonder Girls, “Lupin”-Kara, “Electric Shock"-Fx, “Lu-
cifer"-SHINee, “Gee"-SNSD, and “Gangnam Style"-Psy. Each dance was performed by 10
different people. In total, the dataset is composed of 100 dancing video sequences of 100
different people. The average length of video clips is 6190 frames long. To the best of our
knowledge, this is the longest action video clip of one person acting in the vision community.

Validation of Proposed Method: To verify the effects of the proposed CMFF and
HLDE, we measured the classification performance of the proposed method under various
configurations of features and embedding methods using the Pop-Dance dataset. Through
this experiment, we can validate an importance of each component of the proposed method.
As shown in Figure 7, without all holistic motion features (M), large degradation in per-
formance (21%) is shown, which implies the holistic features take a significant role in repre-
senting action characteristics. Among the holistic features, motion intensity(m;) and motion
speed (mg) are shown to be influential to the performance. The result shows the best per-
formance when using the all features as proposed in our paper. Also, to show the effect of
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HLDE + CMFF A\, | 73%
HLDE + CMFF M\, s 21%

HLDE + CMFF M\, | 41%

HLDE + CMFF M\, s 71%
HLDE + CMFF M\, S 46%

HLDE + CMFF M\, | 74%
HLDE + CMFF M\, [ 6%

CMFF Test

Single layer LPP + CMFF M 22%
Single layer MLDA + CMFF M & 57%
HLDE Test Single layer PCA + CMFF M 65%
PCA instead of MSDE + CMFF M 72%
Proposed HLDE + CMFF M - 81%

Figure 7: Performance of our method with different configurations. The ‘single layer
PCA+CMFF’ means that PCA is applied to all 21 feature channels. The LPP and MLDA
imply locality preserving projection [10] and multi-class linear discriminant analysis [17] re-
spectively. The result shows that the proposed method outperforms all other configurations.

110.0%
100.0%
90.0%
80.0%
70.0%
60.0%

Recog.
Peformance

3 actions
--= Niebles et al. 98.2%
——Proposed 98.2%

94.4% 74.1%

6 actions 9 actions
100.0% 88.9%

Figure 8: Recognition performance comparison using synthesized Weizmann dataset.

HLDE, we tested it with different dimension reduction schemes with CMFF.

Action Recognition Performance: The recognition performance of our method was
compared to the other well-known methods in three ways. First, our method was tested with a
set of synthesized complex actions using the Weizmann dataset [1], which is a new evaluation
for complex actions proposed by [19]. Second, we used the proposed Pop-Dance dataset with
the whole sequence as the query using 10-fold validation strategy. Third, we used the Pop-
Dance dataset with only a part of the sequence as the query. The same codebook, generated
beforehand for each dataset, was used for all methods compared.

Firstly, a synthesized set of complex action sequences is constructed by concatenating 3
simple motions from the Weizmann action database [1]: ‘jump’, ‘wave’ and ’jack’. In [19]
only 6 complex action classes are generated using 3 simple motions, but we increased the
number of complex action classes by allowing repetition of the 3 atomic motions. Figure 8
shows the recognition performance with respect to the number of atomic actions in the se-
quence compared to [19]. As the number of atomic actions increases, our method shows
better recognition performance than [19].

Secondly, performance comparison results for the Pop-Dance dataset using the whole
sequence as the query is shown in Table 1. We compared our method with four methods;
SVM with CMFF (separate SVM classifiers were trained for each class using RBF kernel),
DTW with CMFF (similar to methods used in [9, 12]), the method by Laptev et al. [15],
and the state-of-the-art method by Niebles et al. [19]. We used a linear kernel for [19]
and a y? kernel for [15]. We obtained the best recognition performance as well as a very
short computational time compared to the other methods as shown in Table 1. These results
show that the proposed Action Charts effectively model each action sequence in an abstract
manner. The efficiency of our method comes from the fact that we use only AMSs and not
the whole data for evaluating the fitness. This is similar to looking at the “scores” of a song
to determine which song a person is listening to, which can be done efficiently. Note that
DTW achieves better recognition result than SVM. This is not surprising because the CMFF
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Figure 9: Confusion matrices of the proposed method for experiments on the Pop-Dance
dataset using (a) the whole sequences and (b) small parts as the query

Algorithm Performance (%) | Total Test Time (sec)
CMFF+HLDE+SVM 15 94818.0
CMFF+HLDE+DTW 69 18739.0

Laptev [15] 25 20.9
Niebles et al. [19] 66 31235.0
Proposed 81 783.8

Table 1: Recognition performance and time comparison with widely used methods.

itself is a temporal feature flow. A confusion matrix for the results of our method is shown
in Figure 9(a).

Finally, our method can be applied not only to the case when the whole action sequence
is given as a query, but also to the case when only small parts of the sequences are given.
Recognizing with a partial action sequence is important for practical applications such as
video retrieval. In our test setting, whole sequences were used for training and 100 random
portions (with random length longer than 1000 frames, and random positions) were used for
testing. We compared our method only with DTW since all other methods are not available
for this kind of testing. Average performance is shown in Table 2 and Figure 9(b) is the
confusion matrix for the recognition results of our method. Our method shows promising
results both in recognition performance and computational time.

Unsupervised Action Abstraction: An unsupervised action abstraction is performed
by concatenating frames around components with large weights of Action Chart. This is a
reasonable way to create abstracts of videos, since the attentional parts are very similar to the
human concept of distinctive points in the video. We have experimentally validated this by
comparing automatically found attentional points with manually indicated distinctive parts of
each dance. This evaluation method is similar to the methodologies used for psychological
studies [31]. Comparison with the human annotations coincides by 74.4(+7.6)%, being
quite similar. This shows that our abstraction method is reasonable. The abstraction results

Algorithm | Performance (%) | Avg. Recog. Time per One Test Video (sec)
DTW 24 132.9
Proposed 83 121.9

Table 2: Recognition performance and computation time for recognizing one cropped video.
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will be released as a supplementary material. The supplementary material accompanying the
paper ! provides a video with the abstraction results obtained in two dance sequences.

4 Conclusions

In this paper we proposed a novel method for recognizing long and complex action streams
such as dance videos. We proposed a new motion feature flow descriptor generation method
using local features and a hierarchical low-dimensional embedding method in order to rep-
resent the motion changes as one dimensional feature. Attentional motion spots can be
adaptively detected based on significant temporal changes in motion flow. Feature space-
temporal groups of AMSs have been modeled as weighted Gaussian mixture models, and
the final representation has been termed an Action Chart. In order to validate the proposed
method, we generated a new complex action dataset; the Pop-Dance dataset. The experi-
mental results showed that the Action Chart could give a promising recognition performance
with a very low computational load. Furthermore it could be used for abstracting a long
video sequence aims. Our method can contribute to recognizing repetitive sequential ac-
tivities (e.g. workplace safety, retail fraud detection or sweethearting, and product quality
assurance) and sequentially combined action tasks (e.g. sign language and cooking menu),
which are our future research.
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