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We present a learning algorithm for joint object segmentation and cate-
gorization that decomposes the original problem into two sub-tasks and
admits their bidirectional interaction. In the first stage, in order to decom-
pose the output space, we train category-specific segmentation models to
generate multiple figure-ground hypotheses. In the second stage, by tak-
ing advantage of object figure-ground information, we train a multi-class
segment-based categorization model to determine the object class. A re-
ranking strategy is then applied to classified segments to obtain the final
category-level segmentation results (see Figure 1).

Figure 1: Overview of the algorithm.

Category-specific segmentation. The first step is to train the two-class
pylon models [5] based on the segmentation tree generated by the gPb
method [1]. Suppose the image I can be partitioned into hierarchical re-
gions S = {S1,S2, ...,S2N−1} and a figure-ground label, fi = 1 or 2, re-
spectively is assigned to each region, we formulate the conventional CRF
energy function:

E(f) =
2N−1

∑
i=1

U( fi)+ ∑
(i, j)∈N

V ( fi, f j), (1)

where U( fi) indicates the cost of assigning fi to the segment Si and V ( fi, f j)
is the smoothness term of the boundary cost for two neighboring segments
Si and S j. Furthermore, we define the unary energy:

U( fi) =

{
|Si| ·<w1,h(Si)>, for fi = 1,
|Si| ·<w2,h(Si)>, for fi = 2,

(2)

where h(Si) denotes the feature vectors and the weighting factor |Si| is the
size of the segment, which encourages the model to prefer larger regions.

In the testing stage, with the learned energy function for E(f), instead
of finding only the MAP solution, we introduce parametric min cut [4]
into our unary function in Equation 1:

U( fi,λ ) =

{
U( fi)+ |Si| ·λ , for fi = 1,
U( fi)−|Si| ·λ , for fi = 2.

(3)

Different values of λ provide our model a bias to generate parametrized
results, so we can adjust the hyperplane w and generate multiple segmen-
tation hypotheses by solving a series of graph cuts.
Segment-based categorization. Given an image, we can apply each
category-specific model to obtain a set of segmentation hypotheses Bi, i =
1,2, ...,K for K classes. We first divide our hypothesis set into positive and
negative bags, denoted by B+

i and B−i respectively. The positive bag con-
sists of the hypotheses generated with the positive segmentation classifier
w+

i , and likewise negative bags contain examples from negative segmen-
tation classifiers w−i .

For learning the categorization model, we use standard SVM model
and select the best segmentation among a positive bag and the ground
truth segmentation as positive samples x+. In the meanwhile, we use all
negative samples x− from all the negative bags to reduce the chances of
false positives (see Figure 2).

Given a test image, a bag of segmentation hypotheses from each seg-
mentation model is generated as the training process. We then first deter-
mine the image category label by selecting the highest classification score.

Figure 2: Training for object categorization. The red circle is the ground
truth and the red triangle is the best segmentation hypothesis. All samples
from B−i are negative samples, denoted as blue triangles.

To produce the final segmentation result, we re-rank all the hypotheses in
the predicted category bag. The ranking process can be carried out by the
class-wise Support Vector Regression and their scores measured by the
overlapping ratio between the segment and the ground truth.

Our algorithm enjoys bidirectional interactions between segmenta-
tion and categorization. In the segmentation phase, category information
facilitates breaking down the multi-class segmentation problem into class-
wise sub-problems such that high-quality figure-ground separation can be
generated in a reduced labeling space. In the categorization phase, seg-
mentation information helps identifying object locations, shapes as well
as context, and hence objects can be precisely represented in the feature
space and improve the categorization performance. For concreteness, we
demonstrate the merits of the proposed algorithm on the Graz-02 and Cal-
tech 101 data sets.

Table 1: Graz-02 segmentation results using intersection/union overlap
metric.

Method Background Bicycle Car Person mean
[7] 82.32 46.18 36.49 38.99 50.99
[3] 77.97 55.60 41.51 37.26 53.08

Proposed 91.20 64.95 59.60 60.49 69.06

Table 2: Part of results for Caltech-101 classification. MFea denotes mul-
tiple features. Geo denotes the geometric information.

Method 30 training
Gu et al. [2] 77.7

MFea + Geo SvrSegm [6] 82.3
Proposed 84.2 ± 0.3
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