Discriminative tree-based feature mapping
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We approach the classification and detection problem by viewing each
step in the classification pipeline as a feature mapping. Good discrimina-
tive features x(I) (such as HOG or LBP) can be seen as functions that map
from pixel intensities / to a feature space where classes are more easily
separable. Mixture components and parts [1] can be thought of as an ad-
ditional feature mapping layer ®(x,z) where the mapping function is also
parametrised by component and part positions z. Also a non-linear kernel-
based classifier can be seen as a linear classifier in an implicitly mapped
space ®(x). Finite explicit approximations to a number of kernels have
been proposed by other works [3, 4, 5].

Rather that trying to approximate a kernel, we present explicit ap-
proximate mappings of tree-based classifiers learnt specifically for a par-
ticular problem and feature set. Tree-based classifiers such as boosted
ensembles or random forests are powerful and fast, but are not easy to
integrate with other well-developed methods that rely on explicit feature
representations. In this paper we propose a more direct approach for find-
ing a low-dimensional feature mapping ®(x) to a space where the object
and background classes are more easily separated by a linear hyperplane;
having a well-generalizing underlying classifier is important for this sep-
arability to translate to unseen examples. Rather than finding a kernel
with these properties and approximating it, we directly learn a non-linear
decision boundary using boosted decision trees. We then induce the new
feature dimensions from the decision rules of the trees. We present two
of our methods for inducing ®(x) from trees. We show that they increase
discriminative performance compared to our baseline, at a small cost of
evaluating the ®(x) function. Linear SVMs in the tree-mapped space even
outperform the original tree-based classifiers.

One main reason for inducing a feature mapping rather than using
the trees directly is that many existing methods and frameworks (many
generative models, clustering methods, detection frameworks) require an
explicit feature representation. Hard negative mining is another example
of a very important technique that is well defined for linear SVMs [1], but
more of an unstable art-form for tree ensembles.

Each feature dimension z; = ¢;(x) of our mapped feature vector z =
®(x) encodes the decision path §; taken to one leaf node of the tree. Start-
ing at the root, the path to a leaf node can be seen as a sequence of deci-
sions based on a number of feature values x; and thresholds ¢, where x;
is the i:th dimension of feature vector x. We define

Si(x) = [ 1 8(xji ), )]
=1

where 8, € {87,8} encode binary decisions 8 (z1,22) = [z1 > z2] and
0~ (z1,22) = [z1 < z2] , described using Iverson bracket notation. Such
rules are inherently binary, so we enrich our feature mappings by also
considering the distance to the decision boundary or rule margin m;(x).
Introducing the concept of rule margin adds some ambiguity to the map-
ping - since for a rule j, m;(x) is the accumulated score of a number of
decisions and can be envisioned and implemented in a number of ways.
We present two different ones - Leaf node decision mapping (LDM), that
most closely resembles the space partitioning of the underlying trees and
Polynomial cross-term mapping (PCM) that can be related to sparse poly-
nomial cross terms.

LDM is the most straight-forward addition of m;(x) to the otherwise
discrete tree mapping. For a leaf node of depth n, the mapping simply
becomes

¢j(x) = S;(x)(xj, — ). @
The non-linearity is encoded through the binary decisions made following
the path S;(x). An example receives value zero if it fails any of the binary
decisions. If all decisions are true the example gets a value signifying its
signed distance to the decision threshold made just prior to the leaf node.
Each added dimension can be seen as a partition of space where similar
examples are ordered according to feature x;, and dissimilar examples (as
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Figure 1: 2D toy problem where the 2D points have been mapped using tree-based
feature mapping, after which a linear SVM was learned and projected back to 2D.
<I>Z oly (x) is the feature map of a d-degree polynomial kernel where each dimension

is a polynomial term. The color values represent the scores of the linear SVM.

Mapping mAP improvement
Linear 64.85 0.00
x2-mapped 69.10 4.25
Polynomial kernel 70.09 5.24
Boosted Trees 72.68 7.83
LDM 72.76 7.91
PCM 72.88 8.02
CTM 74.01 9.16

Table 1: VOC2007 patch classification performance for a single HOG template
and linear SVM with various feature mappings. The proposed mappings LDM,
PCM and CTM outperform the other methods, including the boosted tree classifier
they were induced from.

they have failed earlier similarity tests) are ignored. Due to this partition-
ing property LDM closely resembles the decision rules from which it is
induced.

PCM accumulates the signed distance to each of the splits along S ;(x)

n
¢j(x) = /<I_Il(26jk — 1) (xj — ).
This can be seen as selecting a subset of all cross terms of a polynomial
kernel, where the depth of the tree determines the degree of the polyno-
mial. This mapping is also much sparser than a polynomial kernel since
only the cross terms of features that jointly produce discriminative deci-
sions for the particular class are selected.

We perform image patch classification experiments on the VOC2007
and INRIAPerson datasets and image classification on VOC2007. Ta-
ble 1 shows that both PCM and LDM mappings improve patch classifi-
cation results significantly and that the best performance is obtained by
combining the tree mappings (CTM). For image classification the kernel-
approximating mappings (¥2 and Hellinger) that we used are theoretically
well suited, which is reflected in the results - ¥ improves mAP by 5.13%
where while the combined CTM mapping reaches 4.68% improvement.
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