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Abstract
The analysis and comparison of tree-like shapes is of great importance since many

structures in nature can be described by them. In the field of biomedical imaging, trees
have been used to describe structures such as neurons, blood vessels and lung airways.
Since it is known that their morphology provides information on their functioning and al-
lows the characterization of pathological states, it is of paramount importance to develop
methods to analyze their shape and to quantify differences in structures.

In this paper, we present a new method for comparing tree-like shapes that takes
into account both topological and geometrical information. It is based on the Elastic
Shape Analysis Framework, a framework originally designed for comparing shapes of
3D closed curves in Euclidean spaces. As a first application, we used our method for
the comparison of axon morphology. The performance was tested on a group of 44 (20
normal and 24 mutant) 3D images, each containing one axonal tree. We have calcu-
lated inter and intra class distances between them and implemented a basic classification
scheme. Results showed that the proposed method better distinguishes between the two
populations than a pure topological metric. Furthermore, mean shapes can be obtained
with this method.

1 Introduction
Trees are a type of undirected graphs that have no cycles. Therefore, given two nodes, there
is only one path between them. In particular, if one of the nodes is labeled root, the tree is
called a rooted tree. This type of graphs has been studied thoroughly because, among other
things, many naturally occurring structures can be described by them.

In the field of biomedical imaging, some important examples are neurons, blood vessels
and lung airways (See Figure 1). It is known that the morphology of these structures pro-
vides information on their functioning and allows the characterization of pathological states.
Therefore, it is important to have a framework for the analysis of their shapes and to quantify
differences in structures.

At present, there are a number of methods for the comparison of trees. One of the best
known metrics is TED [1], a method based on the tree-edit distance between unordered la-
beled tree-graphs. It measures the difference between two trees by counting the number of
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Figure 1: Diagram of a rooted tree (left) and examples of tree-like structure found in na-
ture: neuron (middle) and blood vessels (right). Taken from http://neuromorpho.org/ and
http://www.isi.uu.nl/Research/Databases/DRIVE/

nodes that must be added/removed from one tree in order to transform it into the other. This
metric has already been successfully applied to neuronal morphology analysis as well as to
the analysis of other branching structures such as lung airways. One of the main disadvan-
tages of this method is that double mistakes (an extra branch and a missing one) extending
from the same node are ignored. Moreover, the geometry of the curves between nodes is not
taken into account.

A different approach was proposed in [2]. The authors constructed a shape space for
rooted treelike shapes and study different metrics on this space. The resulting distance takes
into account both topological and geometrical information of the tree. They applied their
method to the study of airway trees from pulmonary CT scans. This method presents good
results and a strong mathematical foundation.

Other methods have been designed for specific applications, such as the DIADEM met-
ric [3]. This algorithm was developed as the evaluation method for the DIADEM Challenge
and was specifically designed for comparing different tracings of the same neuron. It is
therefore not adapted to the comparison of trees in a more general setting.

Finally, Basu et al. [4] proposed a metric that takes into account both topological and
geometrical information of the shapes. The method is based on finding a deformation energy
between two trees. This energy depends (among other things) on the L1 norm between the
curves that make up the trees. Although the method presents many good ideas, it has a few
shortcomings. First of all, the distance is not symmetric. Therefore, their proposed approach
does not define a proper metric and is not able to compute geodesic paths between samples
or to compute mean shapes. Moreover, the L1 norm is not easy to interpret, as opposed
to metrics based on shape spaces, which embed stretching and bending forces necessary
to transform one curve into another. In addition, the authors have validated their method
by comparing neurons with very different morphologies only (e.g, Pyramidal, Granule and
Motor neurons, 2 images for each population).

In this paper, we present a new method for comparing tree-like shapes. The method takes
into account both topological and geometrical information, and is specifically designed for
analyzing rooted trees that consist of a main curve and several branches (and possibly sub
branches) along it. It is based on the Elastic Shape Analysis Framework [5]. We extend this
work by defining a new metric between trees. 1

1The authors are members of the Morpheme Team (joint INRIA/I3S/IBV research team).
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2 Distance Between Trees
The proposed method is based on the Elastic Shape Analysis Framework [5]. This frame-
work was originally developed to compare shapes of curves in the Euclidean space. The
first version was designed to work on closed curves but was later extended to open curves
and to include an additional function along with the shape (e.g, a texture function) in the
comparison [6]. The idea behind this approach is the following. A 3D open curve is pa-
rameterized in a special way called SRVF (squared root velocity function). The set of all
the SRVF parameterized curves in R3 defines a manifold called the preshape space. In order
to only compare the shape of the curves, all shape preserving transformations are removed
from the representation (translation, rotation, scale and parametrization). This forms a quo-
tient space of the original manifold called the shape space. Finally, one can define geodesics
in the resulting space that can later be used to define distances and to compute averages of
sets of curves.

2.1 Elastic Shape Analysis Framework
Let the main curve and each branch (and sub branch) of the tree be represented by a parame-
terized curve β : [0,1]→R3. Curve β is later reparameterized using its SRVF q(t)=

˙β (t)√
‖ ˙β (t)‖

,

where ‖x‖ is the standard Euclidean norm in R3. Since q depends on the time derivative of β ,
the analysis will be independent of the position of the curve (obtaining a translation invariant
representation). The authors later rescale the curves to length one in order to impose scale
invariance.

We define the preshape space C as follows: C = {q : [0,1]→ R3}.
However, curves that differ by a rotation/reparameterization result in different points in

the preshape space despite having the same shape. This is solved by removing the last two
remaining shape preserving transformations: rotation and reparameterization.

Let SO(3) be the group of 3×3 rotation matrices and Γ be the group of all reparameteri-
zations. Given a curve β with SRVF q, a rotation O ∈ SO(n) and a re-parametrization γ ∈ Γ,
the transformed curve can be expressed as: q? =

√
γ̇O(q◦ γ).

All the elements in C that represent the same shape can be unified by defining the equiv-
alence class:

[q] = {O(q◦ γ)
√

γ̇|O ∈ SO(n),γ ∈ Γ} (1)

Each class [q] defines an unique shape and the set of all these equivalence classes is called
the shape space S. This new space is actually a quotient space of the preshape space: S =
C/(SO(n)×Γ).

The authors then impose a Riemannian structure on the shape space by imposing the
L2 norm on its tangent spaces, which corresponds to assuming that the curves and their
derivatives are square integrable. This allows the computation of geodesics between points
in S. The distance between two points in S is defined as the length of the geodesic between
them. Moreover, the geodesic can be interpreted as the optimal elastic deformation from one
curve into the other.

Given two curves β1,β2 represented by their corresponding SRVF q1, q2, the first step
for computing the geodesic between the two is fixing q1 and finding the optimal rotation and
parametrization of q2 such that:

(O∗,γ∗) = argmin
O∈SO(3),γ∈Γ

‖q1−
√

γ̇O(q2 ◦ γ)‖2 (2)
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C=1

C=0

Figure 2: Registration between two curves including a simple step C function (blue for C = 1,
red for C = 0), b = 0 (left) and b = ∞ (right). If b is big the registration is mostly determined
by the C function.

The optimization over rotation can be achieved with SVD, while the optimization over
the reparametrization requires dynamic programming. We can then define:

q∗2 =
√

γ̇∗O∗(q2 ◦ γ
∗) (3)

The geodesic path between q1 and q∗2 is given by:

α(τ) = (1− τ)q1 + τ(O∗(q2,γ
∗)) (4)

while the distance between the two curves is given by:

dshape(β1,β2) = min
γ∈Γ,O∈SO(3)

‖q1−O(q2,γ)‖2 (5)

An important consequence of this method is that at the end, there is a matching of points
along the two curves (see Figure 2). This property will later be used to calculate the trans-
formation between two axonal trees.

The previous framework was extended in [6] to include additional information in the
shape analysis. This is achieved by including an additional function βc : [0,1]→ Rk (where
k is an arbitrary dimension) to the original representation of curve β . The two components
are combined to form a new curve:

β (t) =
[

βs
b.βc

]
∈ R3+k (6)

where b > 0 is a control parameter. The remaining steps are done in the same way as before
but with the new curve β (although special precaution not to rotate the βc component are
required when eliminating the rotation transformation).

2.2 Metric Formulation: From Curves to Trees
In this section, we extend the Elastic Shape framework to define a metric between trees.
We consider two trees T1 and T2, each consisting of a main curve and several branches (and
possibly sub branches). All are represented by 3D open curves in R3 . Each branch forms
an angle φ ∈ [0,π] with respect to its mother branch (the main curve in the case of first level
branches) and an angle θ ∈ [0,2π) with respect to the first branch of its mother branch (see
Figure 3).

We start by defining the matching function M such that M : (0,1,2, ...n)× (0,1, ....,m),
where n and m are the number of branches in T1 and T2 respectively. The matching function
matches the branches of the two trees as follows:

M(i, j) =

{
1 if i matches j
0 otherwise

M(i,0) = 1 and M(0, j) = 1 means i/j is assigned to nothing

(7)
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Figure 3: Tree diagrams showing how angles φ and θ are defined for a given branch. Angles
φ1 and φ2 are defined with respect to the main branch, while φ3 is defined with respect to
T (2) (its mother branch). A similar convention is taken for θ . In this example, the angle
θ2 associated to branch T (2) is measured with respect to branch T (1), while θ4 is measured
with respect to T (3) (the first branch depending from its mother branch).

Figure 4: Tree diagrams (left) and their corresponding C functions for a given M (right).

Figure 5: Four synthetic images each containing a simple tree with a main curve and some
branches and sub branches.
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To improve the efficiency of the algorithm, we do not allow the matching of branches
that are far away from each other. Other constraints are also included, such as not allowing
the crossed matching of branches (e.g, matching branches 1 and 2 of T1 to branches 2 and 1
of T2).

We then define a branch function C which indicates, for a given time tc, how many
branches remain after β (tc) (see Figure 4). We only take into account branches which have
a match in the other tree.

C functions are defined for both trees and included as the fourth component of β1,β2
as explained in the previous section. This allows us to take into account the difference of
position of matched branches in the distance between trees.

Finally, we define the distance between two trees T1,T2 as:

D(T1,T2) = min
M

[d((β1(t),C1(t,M)),(β2(t),C2(t,M)))+

+ ∑
(i, j)

αi, jM(i, j)D(T1(i),T2( j))] (8)

where βk is the main curve of tree k, Ck its branch function, M the matching function, αi, j a
weight parameter and D(T1(i),T2( j)) the distance between the matched branches (sub trees)
of the two trees.

The first term of the distance definition embeds some geometrical information on the
main branch by matching segments between branching points. Topological information is
taken into account through the C function. The parameter b in equation 6 weights the two
characteristics. Sub branches are taken into account in a recursive way in the second term.
Note that the coefficients weight the different order of sub branches with respect to the main
branch. Moreover, αi, j controls how non matched branches (M(i,0) = 1 or M(0, j) = 1) are
penalized. Typically, αi, j equals a1 if i 6= 0, j 6= 0 and it equals a2 otherwise.

The distance between the two main curves is defined as:

d(((β1(t),C1(t,M)),(β2(t),C2(t,M))) = dlength(β1(t),β2(t))+

+w1dshape(β1(t),C1(t,M)),(β2(t),C2(t,M)))
(9)

where dlength is defined as:

dlength(β1(t),β2(t)) =
‖length(β1(t))− length(β2(t))‖
‖length(β1(t))+ length(β2(t))‖

(10)

and dshape is defined by equation 5. The parameter w1 controls the weight between the
two terms.

In addition, the distance between two matched branches is defined as:

D(T1(i),T2( j)) = dlength(βi(t),β j(t))+w1dshape(((βi(t),Ci(t,M)),(β j(t),C j(t,M)))+

+w2dφ (φi,φ j)+w3dθ (θi,θ j)
(11)

where dlength and dshape are defined in the same way as for the main curve, and the two
remaining terms as:

dφ (φ1,φ2) = ‖φ1−φ2‖/π

dθ (θ1,θ2) = ‖θ1−θ2‖/2π
(12)
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Figure 6: Original confocal microscopy image of a normal axonal tree (left) and its manual
tracing (right) (maximum intensity projections).

Once again, the parameters wi control the weight between the terms.
Finally, the distance for a branch with no match is defined as:

D(T1(i),0) = wkill
length(βi(t))
length(β j(t))

(13)

where wkill is a parameter of the algorithm and β j(t) is the curve associated to the mother
branch of T1(i).

The geodesic defined by equation 4 is adapted to simple curves. To uniquely define the
geodesic between trees, we consider that the transformations between matched branches and
the creation/removal of branches occur uniformly during the same time interval [0,1].

To illustrate how the different parameters can alter the matching of the branches and the
final results, let us consider a set of simple synthetic images (see Figure 5). Let us first
considers images (a) and (b). If the parameters are chosen in a given way, similar branches
and sub branches should match each other, that is, T 1(i) should match T 2(i). In this case,
branch T 1(3) will have no match (it would be matched to 0, thus being "killed"). However,
if we tune the parameters in a different way, this result could change significantly. For
example, if the cost of killing a branch is relatively small compared to transforming one
branch into another, we would be in a scenario where all the branches of T 1 are killed and
all the branches of T 2 are being born (all branches matched to 0). On the other hand, if we
consider images (c) and (d), we can illustrate the effect of w3 on the matching. For a set of
parameters where w3 is relatively small with respect to the other terms, one would expect
T 3(2) to match T 4(2). However, if we increase the weight of dθ in the total distance, the
matching of these two branches becomes too expensive as it requires the rotation of branch
T 3(2) by π . In this case, the method would match both branches to 0.

3 Application: Axon Morphology Comparison
Much effort has been put in recent years into the analysis of neuronal morphology. It is
known that it impacts network connectivity, thus providing information on its functioning.
Moreover, it allows the characterization of pathological states. Therefore, the analysis of
the morphological differences between normal and pathological structures is of paramount
importance. In particular, the analysis of neuronal axonal topologies allows biologists to
study the causes of neurological diseases such as Fragile X Syndrome or Spinal Muscular
Atrophy [7].
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3.1 Validation

For the validation, we have labeled single neurons within intact adult Drosophila fly brains
and have acquired 3D fluorescent confocal microscopy images of their axonal trees. Both
normal neurons and neurons in which a gene related to neurological diseases in humans
was inactivated have been imaged. Each image stack contains a single axonal tree and has
a resolution of 0.093967× 0.093967× 0.814067 µm. Later, these images were manually
segmented by an experienced biologist (see Figure 6) and the result converted to 3D open
curves in R3. In total, 44 images (20 normal and 24 mutant) were used.

3.2 Results

For the validation of our method we have compared our results with the ones obtained by
RTED [8], an efficient solution for the tree edit distance problem. The inter and intra class
distances were calculated using all the images in our database. The mean and standard de-
viation of these distances are presented in Table 1. The reported average intra-class distance
is the average over all possible pairs of trees within each class, and the average inter-class
distance is the average over all possible pairs of trees with one tree from each class. Results
show that the proposed method is able to distinguish between the two populations, with an
average interpopulation to intrapopulation distance ratio of 1.3 and 1.6 (see Table 2). More-
over, we looked at the nearest neighbors of each image in the database (see Table 3) and we
have embedded our metric in a basic classification method that we used to separate the two
populations (see Table 4). The classification method is based on K-Means. We start with
two centroids randomly chosen among the total set of samples. We assign each sample to
the cluster whose centroid is closest to it. Finally, we calculate the new centroid of each
cluster to be the observation that has the minimum total intra distance (instead of calculating
the cluster mean as in K-Means).

Altogether, these results we obtained are far better than those obtained with the TED
method for the normal samples, and a bit worst than those obtained with the TED method for
the mutant samples. Therefore, we believe our method obtains a better overall performance.
Notably, neither method is able to separate perfectly the two classes, which can be explained
by the fact that in our image database, samples from the two analyzed populations are similar
in some cases (see Figure 7).

Figure 7: Some examples of mutant (top) and normal (bottom) axonal trees that are similar
to each other (2D projections).

Citation
Citation
{Pawlik and Augsten} 2011



MOTTINI et al.: TREE-LIKE SHAPES DISTANCE USING THE ESA FRAMEWORK. 9

Population (Method) Mean Std
Normal (ESA) 1615.5 660.6
Mutant (ESA) 1348.7 695.0

Inter Population (ESA) 2092.4 796.4
Normal (RTED) 260.2 97.5
Mutant (RTED) 98.8 56.6

Inter Population (RTED) 195.6 97.2

Table 1: Mean and Std of the inter and intra
population distances for the proposed method
(ESA) and RTED.

Populations (Method) Ratio
Inter / Normal (ESA) 1.3
Inter / Mutant (ESA) 1.6

Inter / Normal (RTED) 0.8
Inter / Mutant (RTED) 2.0

Table 2: Intra and inter population
distance ratios for our method (ESA)
and RTED.

Population (Method) 1 2 3
Normal (ESA) 75% 75% 80%
Mutant (ESA) 88% 88% 83%

Normal (RTED) 11% 5% 16%
Mutant (RTED) 92% 100% 100%

Table 3: Percentages of axons that have a nearest neighbor that belongs to the same popula-
tion (from first to third neighbor), when using ESA and RTED.

Method Well Classified - Normal Well Classified - Mutant Overall Accuracy
ESA 85% 91.7% 88.6%

RTED 52.6% 79.2% 67.4%

Table 4: Percentage of well classified axons for each population and overall accuracy for
ESA and RTED.

Importantly, our method allows us to compute mean shapes between two axonal trees
by taking the middle point along the geodesic between the two trees (Figure 8). This is
something that TED and other methods are unable to do. Having the mean shape will allow
us to derive more complex classification scheme such as the K-means algorithm.

4 Conclusions
A method for the comparison of tree-like structures embedding geometrical and topolog-
ical properties was proposed. This method is an extension of the Elastic Shape Analysis
Framework, which was originally developed for simple curves. The distance between two
structures is defined as the length of the geodesic between them in a space of tree-like shapes.
Moreover, our method is able to show how one tree transforms into the other (by taking in-
termediate points along the geodesic) and to compute the mean shape between them.

As a first application, we used our method for the comparison of axon morphology.
The performance was tested on a group of 44 (20 normal and 24 mutant) 3D images, each
containing one axonal tree manually segmented by an experienced biologist from a set of
real confocal microscopy images. We have calculated the mean and standard deviation of
the inter and intra class distances between the neurons and implemented a basic classification
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Figure 8: Two axonal trees (left and right) and their mean shape (middle) (2D projections).

scheme. We determined that the proposed method is able to distinguish between the two
populations. Moreover, we have compared our results with the ones obtained by TED and
concluded that our method obtains a better overall performance.

In the future, we intend to improve the quantitative evaluation of the method and to apply
it to other tree like structures. In addition, we plan on proposing an algorithm for computing
the average shape of a population and to develop a statistical framework for analyzing and
classifying different populations.
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