
Tree-like Shapes Distance Using the Elastic Shape Analysis Framework

Alejandro Mottini1

alejandro.mottini_d_oliveira@inria.fr

Xavier Descombes1

xavier.descombes@inria.fr

Florence Besse2

Florence.Besse@unice.fr

1 INRIA CRI-SAM
2004 route des Lucioles, 06902 Sophia Antipolis Cedex, France

2 IBV
Faculté des Sciences, Parc Valrose, 06108 Nice Cedex 2,
France

The analysis and comparison of tree-like shapes is of great importance
since many structures in nature can be described by them. In the field of
biomedical imaging, trees have been used to describe structures such as
neurons, blood vessels and lung airways. Since it is known that their mor-
phology provides information on their functioning and allows the charac-
terization of pathological states, it is of paramount importance to develop
methods to analyze their shape and to quantify differences in structures.
At present, there are a number of methods for the comparison of trees.
Some only take into account the topology of the trees (such as [1], [2]),
while others consider both topological and geometrical information (such
as [3], [4]).

Figure 1: Diagram of a rooted tree (left) and examples
of tree-like structure found in nature: neuron (middle) and
blood vessels (right). Taken from http://neuromorpho.org/ and
http://www.isi.uu.nl/Research/Databases/DRIVE/

In this paper, we present a new method for comparing tree-like shapes
that takes into account both topological and geometrical information. It
is based on the Elastic Shape Analysis Framework, a framework origi-
nally designed for comparing shapes of 3D closed curves in Euclidean
spaces [5]. The idea behind this approach is the following. A 3D open
curve is parameterized in a special way called SRVF (squared root ve-
locity function). The set of all the SRVF parameterized curves in R3

defines a manifold called the preshape space. In order to only compare
the shape of the curves, all shape preserving transformations are removed
from the representation (translation, rotation, scale and parametrization).
This forms a quotient space of the original manifold called the shape
space. This framework was later extended to include additional infor-
mation in the shape analysis. This is achieved by including an additional
function βc : [0,1]→Rk (where k is an arbitrary dimension) to the original
representation of the curve. The two components are combined to form
a new curve in R3+k. Finally, one can define geodesics in the resulting
space that can later be used to define distances and to compute averages
of sets of curves.

In this paper we extend the Elastic Shape framework to define a metric
between trees. We consider two trees T1 and T2, each consisting of a
main curve and several branches (and possibly sub branches). All are
represented by 3D open curves in R3 .

A matching function that assigns the branches of one tree to the other
is defined, along with a branch function C which indicates, for a given
point on curve β , how many branches remain after it. We only take into
account branches which have a match in the other tree. Finally, we define
the distance between two trees T1,T2 as:

D(T1,T2) = min
M

[d((β1(t),C1(t,M)),(β2(t),C2(t,M)))+

+ ∑
(i, j)

αi, jM(i, j)D(T1(i),T2( j))] (1)

where βk is the main curve of tree k, Ck its branch function, M the match-
ing function, αi, j a weight parameter and D(T1(i),T2( j)) the distance be-
tween the matched branches (sub trees) of the two trees.

The first term of the distance definition embeds some geometrical in-
formation on the main branch by matching segments between branching
points. Topological information is taken into account through the C func-
tion. Sub branches are taken into account in a recursive way in the second

term. Note that the coefficients weight the different order of sub branches
with respect to the main branch. Moreover, αi, j controls how non matched
branches (M(i,0) = 1 or M(0, j) = 1) are penalized. Typically, αi, j equals
a1 if i 6= 0, j 6= 0 and it equals a2 otherwise.

The formulation for the distance between the two main curves, two
matched branches and unmatched branches is described in the paper.

As a first application, we used our method for the comparison of
axon morphology. We have labeled single neurons within intact adult
Drosophila fly brains and have acquired 3D fluorescent confocal micros-
copy images of their axonal trees. Both normal neurons and neurons in
which a gene related to neurological diseases in humans was inactivated
have been imaged (20 normal and 24 mutant). Each 3D image contains a
single axonal tree that was manually segmented by an experienced biolo-
gist (see Figure 2) and the result converted to 3D open curves in R3.

Figure 2: Original confocal microscopy image of a normal axonal tree
(left) and its manual tracing (right) (maximum intensity projections).

For the validation of our method we have compared our results with
the ones obtained by RTED [6], an efficient solution for the tree edit dis-
tance problem. We have calculated inter and intra class distances between
normal and mutant populations and implemented a basic classification
scheme. Results showed that the proposed method better distinguishes
between the two populations than a pure topological metric.

Furthermore, our method allows us to compute mean shapes between
two axonal trees by taking the middle point along the geodesic between
the two trees (Figure 3). This is something that TED and other methods
are unable to do. This will allow us to derive more complex classification
scheme such as the K-means algorithm.

Figure 3: Two axonal trees (left and right) and their mean shape (middle)
(2D projections).
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