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Abstract

This paper introduces a sparse and incremental 2-manifold surface reconstruction
method. It uses a sparse 3D point cloud generated by a Structure-from-Motion algorithm
(SfM) as its main input as opposed to the more common dense algorithms. Furthermore,
our method is incremental: the surface is updated for every new camera pose computed by
SfM, and the update occurs in a small neighborhood of the new camera pose. Compared to
the other surface reconstruction methods, our method has the advantage to have all these
properties at the same time. The quality and execution time of the proposed algorithm is
evaluated on a large scale (2.5 km.) real sequence taken in an urban environment, and the
method is quantitatively evaluated on a synthetic urban scene.

1 Introduction

The majority of methods which reconstruct the surface of an environment from images have a
dense information as input (dense 3D point cloud or almost every image pixels). In contrast to
these dense methods, the direct estimation of a surface from the sparse point cloud estimated
by Structure-from-Motion step (SfM) is under-explored. The main argument against such a
sparse method is that the lack of points implies an inaccurate scene surface. However, a sparse
method has advantages. First, the quality (accuracy, robustness) of a 3D point is expected to
be better than that of a dense stereo method, thanks to the SfM machinery involving interest
point detection and bundle adjustment. Second, the resulting simplified cloud provides a
simplified surface at low complexity that applications could accept: (pre)visualization with a
small hardware, robot localization, initialization of a dense stereo method.

In this paper, we introduce a sparse and incremental method which reconstructs a tri-
angulated manifold surface from SfM data. The method is incremental since the surface
is locally updated for every new camera pose (and its 3D points) estimated by SfM. This
is interesting for applications which require a surface while reading the video sequence. A
triangulated manifold surface (shortened as “manifold”) is a list of triangles in 3D such that
the neighborhood of every surface point is topologically a disk. This property is needed to
define surface normal and curvature [2], then it is used by a lot of algorithms like surface
refinement involving regularization (smoothing [10], dense stereo [4], . . . ) and others [2, 12].

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 V. LITVINOV, M. LHUILLIER: INCREMENTAL MODELING FROM SPARSE SFM DATA

The majority of sparse methods are based on sculpting in a 3D Delaunay triangulation.
Sec. 2 presents and discusses these methods. Then our method is described in Sec. 3
(prerequisites) and 4 (algorithm). Last Sec. 5 provides experiments and we conclude in Sec. 6.

2 Sculpting Methods in a 3D Delaunay Triangulation
Let P be a set of 3D points sampled on an unknown surface. The 3D Delaunay triangulation
T of P is a list of tetrahedra such that (1) the tetrahedra partition the convex hull of P, (2)
their vertex set is P, (3) the circumscribing sphere of every tetrahedron does not contain a
vertex in its interior. In our paper, a vertex/edge/triangle is a face of a T tetrahedron, and we
use notation |L| for the union of triangles (or tetrahedra) in list L.

In the sculpting methods, a list V of tetrahedra (in T ) represents the reconstructed object
whose volume is |V |. Border δV is the list of triangles which are included in exactly one
tetrahedra of V . Then |δV | should be a manifold and the target surface. In the early work [1],
P has no bad point and we should have P⊂ |V |. This method initializes V = T , then it selects
and removes a tetrahedron ∆ from V while the following conditions are met: ∆ has a triangle
in δV , |δ (V \ {∆})| is manifold, P ⊂ |V \ {∆}|. An efficient rule checks that |δ (V \ {∆})|
is manifold. However, the genus of |δV | is always zero, i.e. |δV | is always homeomorphic
to a 2-sphere without handle/hole. The genus can be greater than 0 in [6, 7] since several
tetrahedra are removed at once from V .

In our Computer Vision context, SfM provides additional visibility knowledge Ri: every
point pi ∈ P is computed from camera locations c j where j ∈ Ri. This implies that |δV | should
not intersect the rays (line segments) c jpi, j ∈ Ri except at pi. The tetrahedra intersected by a
ray are labeled “freespace”, the others are “matter”. Then the triangles between freespace
and matter are good candidates to be in δV . Thanks to the visibility, we expect to reconstruct
surfaces with fewer points than the methods referenced above. However, some bad points can
occur since they are estimated from images, and we should not enforce P⊂ |V |.

Several sculpting methods [5, 13, 15, 18, 20] use visibility knowledge and sparse point
cloud P estimated from images. The manifold constraint on |δV | is not enforced by [13, 15,
18]. Method [15] is incremental, but it defines directly V as the list of the matter tetrahedra,
then the resulting surface |δV | is not manifold. Method [18] is real-time (for small objects)
and deals with image noise, but it is not incremental. In [13], a non-incremental method
estimates a surface minimizing a cost involving visibility and photoconsistency. The manifold
constraint is enforced in [5, 20]. Method [5] is limited to genus zero surface. Method [20] is
incremental but the time complexity of one iteration can be too large: if the camera trajectory
is a loop, this complexity is at least linear to the number of camera poses in the loop.

Our contribution is an incremental sculpting method which estimates a manifold from
sparse SfM data, without genus restriction and without prohibitive complexity in presence of
loop in the camera trajectory. Note that other sparse methods [11, 16, 19] exist, but they can
not be classified in this Section and do not estimate a manifold in an incremental scheme.

3 Prerequisites

3.1 Manifold Tests
According to p. 723 of [9], |δV | is manifold if for every vertex v of every δV triangle, the
general test is successful: the triangles in δV including v can be ordered as t0, · · · tk−1 such



V. LITVINOV, M. LHUILLIER: INCREMENTAL MODELING FROM SPARSE SFM DATA 3

Figure 1: Manifold tests (best viewed with colors). See the text for triplets explanation.

that ti∩ t(i+1) mod k is an edge, and such an edge is included in exactly two triangles ti and t j.
In other words [8], the graph of the v-opposite edges in the δV triangles must be a cycle.

We complete the rule of [1] in our case where constraint P⊂ |V | is not used and obtain
the subtraction test. Assume that ∆ ∈V , V ⊆ T , and |δV | is manifold. Then |δ (V \{∆})|
is manifold if the numbers of (vertices,edges,triangles) in ∆∩ |δV | is in {(0,0,0),(3,3,1),
(4,5,2),(4,6,3),(4,6,4)} (Fig. 1). Only cases (3,3,1) and (4,5,2) are in [1].

We also need the addition test, which is similar to the subtraction test (adding ∆ to V is
like subtracting ∆ from T \V ). Assume that ∆ ∈ T \V , V ⊆ T , and |δV | is manifold. Then
surface |δ (V ∪{∆})| is manifold if the numbers of (vertices,edges,triangles) in ∆∩|δV | is in
{(0,0,0),(3,3,1),(4,5,2),(4,6,3),(4,6,4)} (Fig. 1).

If we would like to add a single tetrahedron ∆ to V such that |δV | is manifold, we can use
the addition test or use the general test on triangles δ (V ∪{∆}) at every vertex in ∆∩|δV |. In
this case, the addition test is faster than using the general test. These tests can be converted to
tests that are more convenient if T is implemented as the adjacency graph of the tetrahedra
(e.g. see Appendix of [20] for the addition test).

3.2 Notations
At image (or time) t +1, our method has the following input:

• 3D Delaunay triangulation Tt ;

• list Ft of freespace tetrahedra such that Ft ⊆ Tt ;

• list Ot such that Ot ⊆ Ft and |δOt | is manifold;

• list Pt+1 of new Structure-from-Motion points, camera locations ct ′ where t ′ ≤ t +1;

and output:

• 3D Delaunay triangulation Tt+1 by adding Pt+1 in Tt ;

• list Ft+1 of freespace tetrahedra (by raytracing in Tt+1) such that Ft+1 ⊆ Tt+1;

• list Ot+1 such that |δOt+1| is manifold and Ot+1 is the largest as possible in Ft+1.

Notations T,O,F are these tetrahedra lists if t does not need to be mentioned. The 3D ball
centered at x ∈R3 with radius r > 0 is Br(x). Note that the vertex set of Tt is P0∪P1∪·· ·∪Pt .

3.3 Assumptions and Consequences
The following assumptions are done for complexity reasons.

First we assume that pi ∈ Pt and t ′ ∈ Ri imply t ∈ Ri and t ′ ≤ t. This means that pi is
reconstructed from the t-th image and previous ones, but it is not reconstructed from next



4 V. LITVINOV, M. LHUILLIER: INCREMENTAL MODELING FROM SPARSE SFM DATA

Figure 2: Sculpting method general overview (2D case). White triangles are freespace (in F),
grey triangles are matter, red line is border δO, green dots are newly inserted points and the
green circle encloses the tetrahedra that will be deleted by the addition of the green dots.

ones. This implies that ray pict exists if pi ∈ Pt and SfM does not update a reconstructed point
once it is a vertex of T .

Second we assume that the lengths of all rays pict are bounded by r > 0. This is almost a
consequence of standard SfM point filtering, since the point uncertainty roughly increases as
the square of the ray length [14]. Then Pt is included in Br(ct).

Third we assume that the diameters of the tetrahedra are bounded by l > 0. This condition
is met if T is initialized by a large cartesian grid of Steiner vertices (i.e. extra vertices): the
diameter of the circumscribing sphere of a tetrahedron is less than the diagonal length l of the
(implicit) grid voxels. Since every tetrahedron created by the addition of a point has this point
as vertex [5], the addition of Pt+1 is a local update of T included in Br+l(ct+1).

4 Our Incremental Sculpting Method
Assume that we add Pt+1 in the Delaunay Tt as soon as the Ot computation is done. This
destroys a list D of tetrahedra, which can contain tetrahedra in Ot (Fig. 2.f). The problem is
the following: if we initialize Ot+1 = Ot \D, |δOt+1| can be non manifold, and there is no
obvious method to update Ot+1 such that |δOt+1| becomes manifold (inspired by [10], we
could add new points in the Delaunay, but new tetrahedra will be destroyed and so on).

Here is our idea. List D is computed without adding Pt+1 in Tt . Then we initialize
Ot+1 = Ot , shrink Ot+1 such that |δOt+1| is maintained manifold by removing progressively
tetrahedra from Ot+1 until Ot+1∩D = /0. Now we add Pt+1 in Tt without modifying neither
Ot+1 nor its border. If condition Ot+1∩D = /0 can not be meet exactly, a minority of points in
Pt+1 are not added in Tt to be sure that |δOt+1| is manifold. Last we trace rays to obtain the
new freespace Ft+1, and grow Ot+1 in Ft+1 such that |δOt+1| is maintained manifold.

4.1 Step 1: Enclosing
We should calculate D without updating T to ensure that |δOt+1| is always a manifold. In
practice, the results are better if we replace D by E such that D⊆ E ⊆ Tt , then shrinking will
be stopped when Ot+1∩E = /0 (which implies what we would like: Ot+1∩D = /0). We chose
E such that it is the list of the tetrahedra in Tt included in a ball B including |D| (Fig. 2.b).
According to Sec. 3.3, we can use B = Br+l(ct+1).
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4.2 Step 2: O Shrinking

Now we would like to find Ot+1 such that Ot+1⊆Ot \E (i.e. Ot+1⊆Ot and Ot+1∩E = /0) and
|δOt+1| is manifold. We initialize Ot+1 = Ot (Fig. 2.a) and we remove from Ot+1 tetrahedra
one-at-once (using the subtraction test) or several-at-once (using the general test). During
this shrinking process, |δOt+1| is manifold and Ot+1 ⊆ Ft (Fig. 2.b). The selection of the
removed tetrahedra and the stopping criteria of this process are detailed in Sec. 4.7. Actually,
we can not prove that the resulting Ot+1 meets exactly Ot+1∩D = /0, but we expect that the
number of tetrahedra in Ot+1∩D is very small and the next step deals with this problem.

4.3 Step 3: Adding Points without Destroying δO

We initialize Tt+1 = Tt and Ft+1 = Ft . For every point p in Pt+1, we use the following process.
Thanks to CGAL [3], we calculate the list D(p) of tetrahedra of Tt+1 which would be

destroyed if we add p in Tt+1.
If D(p)∩Ot+1 = /0, we add p in Tt+1 (Fig. 2.c). This does not update Ot+1, thus |δOt+1|

is still a manifold. We also apply Ft+1← Ft+1 \D(p) i.e. the tetrahedra created by the addition
of p are labelled matter. We still have Ot+1 ⊆ Ft+1. The creation date t +1 is also given to
the created tetrahedra.

If D(p)∩Ot+1 6= /0, it is difficult to update Ot+1 such that |δOt+1| is still manifold and
Tt+1 is still a 3D Delaunay triangulation. We do not add p in this case, which is rare since
Ot+1∩D is expected to be very small (Sec. 4.2). We also apply Pt+1← Pt+1 \{p}.

4.4 Step 4: Ray-Tracing

Ray tracing labels tetrahedra in Tt+1 as freespace, i.e. it increases list Ft+1. We do not trace
all rays available at time t +1 for complexity reason, so the rays are selected before tracing.

First, we trace the rays of Pt+1, i.e. every ray pic j, j ∈ Ri of every point pi in Pt+1, since
this computation was not done before. Tracing ray pic j is a walk in the adjacency graph of
the tetrahedra: the walk starts from pi (which is a vertex of T ), and we go from a tetrahedron
to one of its four neighboring tetrahedra if the common (face) triangle is intersected by the
ray. Every tetrahedron has an intersection counter which is incremented if it is in the walk.

Second, we collect in list R every ray of Pt ′ (where t ′ ≤ t) which can intersect a tetrahedron
of N. List N is the list of the new tetrahedra, i.e. the tetrahedra which have creation date
t +1 (Sec. 4.3). The other rays do not need to be considered. Then we trace every ray in R
as explained before. Since this ray was already traced, we only increment the intersection
counter for the tetrahedra in N (every ray is counted once). At the end, Ot+1 ⊆ Ft+1 since the
ray-tracing step adds new tetrahedra to the list Ft+1 (Fig. 2.d).

Here is a method to compute R efficiently. Let XN be a bounding box of the tetrahedra in
N. Let Xt ′ be a bounding box of the rays of Pt ′ . For every t ′ such that t ′ ≤ t and XN ∩Xt ′ 6= /0,
we put in R the rays of Pt ′ which intersect XN .

4.5 Step 5: O Growing

We grow Ot+1 in freespace Ft+1 by adding tetrahedra one-at-once (addition test) and several-
at-once (general test). As required in Sec. 3.2, Ot+1 ⊆ Ft+1 and |δOt+1| is manifold (Fig. 2.e).
This step is similar to that of the batch method in [20]. Here we give an overview of it.



6 V. LITVINOV, M. LHUILLIER: INCREMENTAL MODELING FROM SPARSE SFM DATA

First we apply a “One-Tetrahedron-at-Once Growing”. A priority queue Q stores the
tetrahedra in Ft+1 \Ot+1 which have a triangle in δOt+1 (we initialize Q with a tetrahedron in
Ft+1∩E). At each step, Q provides tetrahedron ∆ with the largest ray intersection counter. We
try to add ∆ to Ot+1 using the addition test. If this is successful, the tetrahedra in Ft+1 \Ot+1
which are adjacent to ∆ are added to Q. The process stops when Q is empty. This growing is
fast thanks to the addition test, but it can not change the |δO| genus.

Second we apply a “Several-Tetrahedra-at-Once Growing” to allow genus changes. We
find a vertex v in |δOt+1|∩ |E| such that all v-incident tetrahedra are in Ft+1, and try to add
to Ot+1 those tetrahedra which are in Ft+1 \Ot+1 using the general test. If this is successful,
we try to start one-tetrahedron-at once growings from these tetrahedra. The overall process
stops when we can not find a successful v.

4.6 Step 6: Post-Processing

First of all, we apply a genus refinement procedure (“Handle Removal”) to Ot+1 ∩E as
described in [21]. The only difference is that we don’t add Steiner points in the middle of the
edges such that Tt+1 is Delaunay. Then we apply an incremental surface smoothing step [20].

4.7 Details on the Shrinking Step

We initialize Ot+1 = Ot and progressively remove tetrahedra in Ot+1 such that |δOt+1|
remains manifold until Ot+1∩E = /0. The Ot+1 shrinking is an inverse of growing in Sec. 4.5.
Let Q be the list (priority queue) of tetrahedra in Ot+1∩E which have a triangle in δOt+1.

First we apply a “One-Tetrahedron-at-Once Shrinking”. We remove from Q the tetrahe-
dron ∆ which has the smallest intersection counter. If ∆ /∈ Ot+1 or ∆ does not have a triangle
in δOt+1, we take another ∆ in Q. Then we try to remove ∆ from Ot+1 such that |δOt+1|
remains manifold using the subtraction test (Sec. 3.1). In case of success, we add to Q the
tetrahedra of Ot+1 ∩E which are adjacent to ∆. We continue until Q = /0. This shrinking
is fast thanks to the subtraction test, but it can provide E ∩Ot+1 6= /0 (e.g. if E ∩Ot+1 = /0
implies that |δOt+1| genus changes).

Second we apply a “Several-Tetrahedra-at-Once Shrinking” to allow genus changes. We
find a vertex v which is both in a triangle of δOt+1 and in a tetrahedron of E, define L as the
list of tetrahedra in Ot+1∩E which are incident to v, apply Ot+1← Ot+1 \L, and apply the
general test for δOt+1 at every vertex of L. In case of success, we redefine a list Q with the
adjacent tetrahedra of L, and redo the one-tetrahedron-at-once shrinking above. In case of
failure, we apply Ot+1← Ot+1∪L and try another v. The overall process stops when we can
not find a successful v.

5 Experiments

5.1 Real Image Sequence

The City sequence is taken by a PointGrey Ladybug omnidirectional camera. Ladybug is
a (non-central calibrated) rigid multicamera system consisting of six synchronized pinhole
cameras each of which takes 1024×768 images at 15 fps. It is mounted on a car and is about
4 meters above the ground. The trajectory is 2.5 km long and includes a large loop (2.3 km).
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Figure 3: Camera, trajectory, sparse SfM point cloud and images of the City sequence.

First we provide details on SfM. A central approximation simplifies the calculation; we
enforce the centers of the 6 cameras to be the same. Moreover, the size of the input images
are reduced by a half to improve the computation speed. Then we adapt the incremental
SfM in [17] based on local bundle adjustment. The loop is closed thanks to a global bundle
adjustment. At the end of the SfM process, 1306 keyframes are selected in the 7735 available
6-tuples of images, 483k points are reconstructed from 2.64M Harris points detected and
matched in the images. Thus the surface should be reconstructed with a small number of
points (about 193 per meter). Fig. 3 shows a top view of the SfM result and sequence images.

Second we explain how to initialize our incremental method. Let t be the keyframe index
(same notation as in Sec. 3 and 4). We construct the 3D Delaunay triangulation T40 from the
points in Pt where t ≤ 40, estimate freespace F40 by ray-tracing every ray in these Pt (Sec. 4.4),
and obtain O40 by the growing step (Sec. 4.5) and handle removal [21]. The points of Pt are
filtered as follows. Let v be the vertical direction (||v|| = 1) and s = ∑

39
t=0 ||ct+1− ct ||/39.

Every point pi in Pt meets −3s≤ (pi− ct).v (we remove points below the ground surface),
||pi− ct || ≤ 15s (Sec. 3.3) and pi has two rays forming an angle larger than 10◦ (standard
filtering using aperture angle). The step of the grid of Steiner points is 15s.

Third we apply the incremental method for 40≤ t ≤ 1306. Fig. 4 shows the final surface
as well as local views of the surface at several times t. The final surface has 528k triangles.
The joint video shows the progressive surface reconstruction and the final surface (this video
is also in http://www.youtube.com/watch?v=w1AQfvhGx5I).

The execution time for every keyframe is on the left of Fig. 5. We use a 4xIntel Xeon
W3530 at 2.8 GHz (multi-threading is only used by the ray-tracing step). The most costly
step is the handle removal (Sec. 4.6). This step and the (main part of the) other steps are only
applied in E. Remind that E is the list of the tetrahedra in the enclosing ball B, which has a
bounded radius (Sec. 4.1). According to Fig. 5 (right), the size of E is less than 120k, which
is quite smaller than 2066k, the number of tetrahedra in the final 3D Delaunay triangulation.

The large loop (2.3 km) is closed at the very end of the sequence, where we observe a
computation time increase. This is due to point increase in B: we reconstruct new points of
the loop end at a location where points are already reconstructed at the loop beginning.

According to Sec. 4.2, we can not prove that Ot+1 meets Ot+1 ∩D = /0 and we expect
that Ot+1∩D is small enough to reject a minority of points (Sec. 4.3). In our experiments,
Ot+1∩D = /0 is not met in only 59 keyframes out of 1306 (4.5%). For these keyframes, the
maximum percentage of rejected points is 26.6% and 56 keyframes have less than 13.3% of
rejected points. Then a minor amount of points can not be added in Tt+1 due to Ot+1∩D 6= /0.

http://www.youtube.com/watch?v=w1AQfvhGx5I
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Figure 4: Views of reconstructed surfaces of the city (real) sequence. Top: global and local
views of the final surface (the sky is removed to help visualization). Bottom: local views of
the surface during computation. The triangle normals are colored: the ground is white, the
walls are red-green-blue, the sky is black.
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Figure 6: Images of the synthetic sequence, SfM results, the final and estimated surface.

5.2 Synthetic Image Sequence with Ground Truth
This Section provides the reconstruction error of our sparse scheme (central SfM + incremental
surface reconstruction) applied in a synthetic urban scene, whose textures are extracted from
real images taken in a city. The synthetic sequence has 1553 images generated by ray-tracing
and the non-central camera in Sec. 5.1. The camera trajectory is a 621 m long and closed loop.
The SfM reconstructs 346 keyframes and 145k points from 775k Harris points detected and
matched in the images. Then we apply our incremental surface reconstruction and estimate
the error between the final estimated surface (182k triangles) and the ground truth surface.

Now we explain how to estimate the reconstruction error. First, a pose-based registration
is used to set both surfaces in the same coordinate system. The i-th keyframe has estimated
location ci and ground truth location cg

i ; the latter is the mean of the 6 camera centers
in the ground truth coordinate system. Then we estimate the similarity transformation S
minimizing E(S) = ∑

345
i=0 ||S(ci)− cg

i ||2, and use S to map the estimated surface in the ground
truth coordinate system. Second, a ray-tracing approach is used to compute the error. Let p
be a pixel in the i-th keyframe. Let pe be the first intersection of the estimated surface and
the ray defined by p and the estimated i-th pose. Let pg be the first intersection of the ground
truth surface and the ray defined by p and the ground truth pose of the i-th keyframe. If both
pe and pg exist, we define error e(p) = ||pe−pg||.

The pose-registration provides
√

E(S)/346 = 14 cm. Then we uniformly sample pixels
in the keyframe sequence and examine the distribution of e(p) for 769k pixels. The x-quantile
qx is the real such that x percents of the e values are less than qx. We have q10 = 12, q20 = 16,
q30 = 18, q40 = 22, q50 = 28, q60 = 48, q70 = 76, q80 = 112, q90 = 174, and 3% of the e
values are larger than 600 (all numbers are given in centimeters).

6 Conclusion
In this paper, we have introduced a new incremental 2-manifold surface reconstruction method
taking a sparse SfM data as input. Compared to the previous similar algorithms, it has the
advantage to produce a manifold without genus restrictions and without prohibitive complexity
in case of large loops in the input trajectory. It has been experimented on a large scale real
urban scene as well as on a set of synthetic data with ground truth.

Several improvements of our method are subject of future work. First, the choice of a
better (smaller) enclosing area where almost all calculations are done would decrease the
computation time. Second, our implementation and matching method should be improved.
Moreover, several lines of investigation exists to enhance the quality of the reconstructed
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surface. In particular, the usage of the other type of the input primitives than the interest
points should be explored. We could also think about surface denoising methods that make a
better usage of the Structure-from-Motion properties and scene priors.
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