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Abstract

Many applications pointed to the informative potential of the human eyes. In this
paper we investigate the possibility of estimating the cognitive process used by a person
when addressing a mental challenge, according to the Eye Accessing Cue (EAC) model
from the Neuro-Linguistic Programming (NLP) theory [3]. This model states that there
is a subtle, yet firm, connection between the non-visual gaze direction and the mental
representation system used. From the point of view of computer vision, this work deals
with gaze estimation under passive illumination. Using a multistage fusion approach,
we show that it is possible to achieve highly accurate results in both terms of eye gaze
localization or EAC case recognition.

1 Introduction
Psychologists noted the importance of efficient perception of people’s gaze direction in non
verbal communication. Human estimation of other’s gaze direction is performed by specific
neuronal circuitry involving areas from the superior temporal sulcus [23]. Eye gaze direction
and eye movement may be perceived as tools for inferring one’s cognitive processes [28],
respectively emotional states, or for communicating in interpersonal relations [1].

In this paper we focus on identifying one’s cognitive process by analyzing the direction
of gaze. By analyzing non-visual movements of the eyes, Bandler and Grinder introduced the
Eye Accessing Cues (EAC) model as part of the Neuro-Linguistic Programming (NLP) the-
ory [3]. The NLP theory aims at describing the behavior patterns created by the interaction
between the brain, the language and the body. The EAC model describes the eye-movements
that are not used for visual tasks (non visual movements) and suggests that the direction of
gaze, in such a case, can be an indicator for the internal representational system used by a
person facing a given query: he/she may respond by thinking in visual terms (i.e. images),
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Figure 1: EACs as defined in the NLP theory. The model states that the specifics of the
thinking mechanism is connected with a non-visual gaze orientation.

auditory (sounds) or kinesthetic terms (feelings, tastes, smells), as well as for the mental
activity of that person, of remembering, imagining or having an internal dialog.

The here proposed approach first analyzes the eye region by localizing the eye landmarks
and demonstrate that high accuracy is achievable using a multi stage fusion approach. Later,
the landmarks positioning will be transformed into EACs. The proposed algorithm combines
luminance and position prior information with standard machine learning process (feature
extraction from a sliding sub-window, followed by classification) and iterative shape fit for
landmarks localization. Given the positions, we identify the EACs, formulating, to our best
knowledge, the first accurate solution to the problem of automatically recognizing the EACs.

1.1 Eye Accessing Cues

The origins of the idea that involuntary eye movements point to a person internal representa-
tional system goes back until the 19th century [18]. Dilts et al. [13] had proved the existence
of such connection by using electrodes to track simultaneously eye movements and brain
wave characteristics of people while asking them questions that were meant to stimulate
their sense of sight, hearing or feeling. The results of these tests lead to the identification of
the basic NLP EACs, which are shown in figure 1.

Since its introduction, several studies have attempted to validate this model. While some
studies have shown a correlation between the representational systems and the direction of
eye gaze, mostly for the visual system [4], [6], other studies were, at best, neutral, [15],
[24], with the most recent calling for additional research [26]. The studies revealed an inter-
dependence between the appearance of certain predicates or words associated with one of
the representational systems (visual, auditive or kinesthetic), and the first EAC that follows
them. Yet, the cognitive response differs from person to person and all the eye movements
in response to a question should be considered.

The difference between voluntary eye movements (as for seeing something) and invol-
untary ones (as part of non-verbal communication) is retrievable by the analysis of duration
and amplitude [14]. Here, we concentrate our efforts only on correctly identifying the EAC
from manually annotated still images, that are acquired under minimal invasive conditions
(i.e. without a head mounted camera), as they may disturb the natural cognitive process.
The actual EAC is thought to be identified by distinguishing between the relative position
of the iris and the eye socket (lid edge). Our approach is to determine the four limits of the
eye socket: the inner and outer corners, the upper and lower lids and the iris center and to
subsequently analyze the identified region.
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1.2 Related work
As far as we know, no previous work addressed the specific task of EAC recognition. Yet, the
method specifics place it close to iris center localization, gaze detection or facial landmark
estimation. Despite the rich computer vision literature in all these aspects, due to paper
length limitations, we will consider only a partial review and we refer the reader to the
recent surveys in [17] (for eye localization and gaze tracking) and in [8] (for facial landmark
estimation).

There were many computer vision approaches to gaze direction identification [14], [17],
most based on the use of an eye tracker. Eye tracking technology usually relies on intrusive
techniques based on active illumination (such as measuring the reflection of light, or ana-
lyzing the corneal reflections – the Purkinje images), which are a potential perturbation to
one’s inner cognitive process and thus are excluded from the current work. The alternative is
to develop non-intrusive techniques that directly measure the gaze direction, such as the ap-
proaches used in [33], [7], [35], that locate also facial landmarks. Also, we restricted for the
moment the use of head movement, tracking and orientation, such as the many approaches
surveyed in [22].

Facial landmarking originates in the classical holistic approaches of Active Appearance
Models (AAMs) [9] and Elastic Graph Matching [21]. In the recent times, it switched to
independent models built on top of local part detectors, sometimes known as Constrained
Local Models (CLMs) [12]. The CLM model was extended with full voting from a random
forest in [11] or in [25] where statistical shape model parameters are optimized via proba-
bilistic interpretation. All other notable work assumes a connected spatial model, requiring
the need for approximate matching algorithms. Thus Valstar et al. [31] complemented the
SVM regressed feature point location with conditional MRF to keep the estimates globally
consistent. Belhumeur et al. [5] proposed a Bayesian model combining the outputs of the
local detectors with a consensus of non-parametric global models for part locations; Zhu et
al. [36] relied on a connected set of local templates described with HOG.

As many facial landmarking methods do not localize the iris center, we consider here
as foremost state of the art the maximum isophote method proposed by Valenti et al. [29];
especially since the necessary circular and symmetrical shape of the iris is not occluded in
the envisaged situation.

2 Localization of eye landmarks
Similarly to [12], the here proposed algorithm for eye landmarks (inner corner, outer corner,
upper lid, lower lid and iris center) localization has two pre-requisites (face square and eye
centers) and uses a multi stage detection based on likelihood maps for position and intensity,
followed by a more elaborate template matching and shape constraining techniques.

Pre-requisites: Face Detector and Eye Localizer The used face detector is the classical
Viola-Jones [32] followed by an iris center localizer . Motivated by the fact that eye impair-
ment may bring additional information about the gaze direction, we restricted our analysis
to images which have both eyes completely visible, constraint which leads to a maximum
head angle of 30o. These cases are covered by a frontal face detector. All subsequent com-
putation is performed on a normalized face square of 300×300 pixels, obtained by bilinear
re-sampling of the detected face box. For the problem of eye (iris/pupil) center localization,
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Figure 2: Searched eye landmarks (showed in figure (a) on the right eye) and an outer corner
maps example: (a) Face crop from an original image with highlighted outer eye corner search
area;(b) Position prior map p1 gathered from all training images; (c) Intensity prior map p2;
(d) Likelihood Map determined by the MLP given the actual data p3.

we compared the method proposed by Valenti et al. [30] with the method from [16]. The
comparative evaluation results are in table 1. Taking note that neither is sufficiently accurate
when challenged by gaze variation, we significantly improve the performance of the eye lo-
calizer from [16] by considering a small, centered region of interest (ROI) of size deye

5 × deye
5

(where deye is the inter-ocular distance) around the reported eye center. The improvement
procedure of the eye center and the localization of the other eye landmarks, requires position
and intensity priors and template matching.

Position and intensity priors During training, a bounding box is computed on the range
of each feature location within the region found by the face detector as in the classical CLM
[12]. For each candidate landmark, we construct its position prior as a probability map
spanning its region of interest, such that each position is given the likelihood of being close
to the ROI center. This prior is denoted as p1(i, j) and is exemplified in figure 2(b) for the
case of the outer corner of the eye.

While for eye center localization it is common to investigate only the darkest pixels [33],
we, here, extend this idea to all landmarks with appropriate conditions (such as considering
that the inner eye corner is darker than most of its neighboring pixels while the upper limit of
the eye is brighter than most of its neighboring pixels). Thus, for each candidate landmark,
we construct its intensity prior as a probability map spanning its region of interest, such that
each position is given the probability of occurrence of its corresponding graylevel within the
ROI. This prior is denoted as p2(i, j) and is exemplified in figure 2(c) for the case of the
outer corner of the eye.

Template matching The problem to be solved is to determine for each pixel, within a
reasonable neighbourhood of an initial landmark, the probability of that pixel being the true
landmark. As proposed in [27], we considered rectangular patches centered in the given point
and we trained a Multi-Layer Perceptron (MLP) with the integral and edge projections within
that image patch. While in [27] the edge projections were taken from a wavelet transform,
we use the simple Sobel edge intensity image, that has the benefit of being invariant to
additive illumination changes. We recall that for a gray-level image sub–window I(i, j) with
i = im . . . iM and j = jn . . . jN , the projection on the horizontal axis, PH is the average gray–
level along the columns, while the vertical axis projection, PV is the average gray–level along
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the rows (1):

PH( j) =
1
H

iM

∑
i=im

I(i, j), j = jn, . . . , jN ; PV (i) =
1
V

jN

∑
j= jn

I(i, j), i = im, . . . , iM (1)

where H = iM − im+1 and V = jN − jn+1, and we empirically found that the best values are
H =W = 30. The edge projections are found using eq. (1), where the original image values,
I(i, j) are replaced with Sobel edge intensity image values. To ensure a better robustness to
illumination variation, we normalized the projections to the [−128,127] range. Each patch
is thus described by a feature vector formed by the concatenation of the four projections:
horizontal/vertical, integral/edge.

A MLP is separately trained for each landmark (with patches as input) to output the
Euclidian distance between the center of the input patch and the true landmark position
(thus performing regression). Thus, given an original image and a landmark to localize, the
complement of the output of the MLP, c(i, j) is the landmark likelihood map p3(i, j), with
p3(i, j) = 1− c(i, j). A typical p3 map is showed in figure 2(d) for the location of the outer
eye landmark. For each landmark, a final probability map is computed as:

p123(i, j) = α · p1(i, j)+β · p2(i, j)+ γ · p3(i, j) (2)

where α , β and γ weight the confidence in each type of map; their values were deduced
on the training database independently for each landmark for each eye. Good general choices
are α = β = 0.25, γ = 0.5. The weighted center of mass of the p123 probability map for each
landmark represents an accurate estimate to that landmark.

Shape constraints A modified form of the Constrained Local Model [12] is further used:
instead of gathering local constrains and maximizing the global output, for each landmark
(locally), we iteratively use the global shape to construct a local constraint. As we investigate
eye landmarks in terms of gaze variation, the iris center position has very large variations,
thus it is not included in the shape; the shape contains only four points, namely the limits of
the eye socket.

From the ASM model [10] we recall that given s sets of points {xi}, after alignment, one
may compute the mean shape x, and the projection matrix on a PCA reduced space P. Any
of the input shapes is given as:

x ≈ x+Pb ⇒ b = PT (x−x) (3)

Given a large number of shapes, one may compute a histogram for the transformation
vector, b. This histogram may be approximated with a t-dimensional independent (due to
PCA) Gaussians distributions with 0 mean and Σ = diag(λi) covariance matrix, where λi is
the shape eigenvalue on the dimension i. Thus for each location, we compute ps(i, j)|x as
the probability to have the landmark at position (i, j) given a shape x.

Taking into account that at the current step, for each landmark, an estimate of the shape
is available and observing that some landmarks (e.g. eye outer corners) are more reliable
than others (upper and lower boundaries), by keeping all points fixed with the exception of
the least reliable, we build the likelihood of various positions for the current pixel. Then, the
procedure is repeated iteratively for each landmark Nit times (typically Nit = 2).
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The final landmark position is taken as the weighted center of mass of the convex combi-
nation (with typical weight δ= 0.7), pF(i, j), between the initial stages and the shape fitting
likelihood:

pF(i, j) = δ · p123(i, j)+(1−δ ) · pS(i, j)|x (4)

3 Recognizing individual EACs
The recognition of the EAC case (gaze direction) is done by identifying the position of the iris
center inside the eye socket. The here proposed methodology uses eye socket limits, as given
by the eye landmarks, the eye center and the description of the eye socket content via integral
projections. More precisely, the four landmarks on the eye socket form a quadrilateral. The
H and V limits used in equation (1) vary on consecutive image rows/colums, as they are
equal with the number of pixel on the specific row/column inside the given quadrilateral.
Each of the resulting integral projections is normalized to 32 samples. The final feature
describing the EAC of a given eye consists thus from the 10 coordinates of the normalized
eye landmarks and the 64 elements form the horizontal/vertical projections.

For the actual recognition we have trained a classifier to take as input the EAC feature and
to return the EAC case. After extensive testing we determined that simple classifiers (as MLP,
SVM or boosting comparators) are unable to cope with the many possibilities encountered.
Good performances are achieved only by meta-classifiers, and we thus considered that a very
good compromise is achieved by the use of a regression random forest with 40 trees (mean
square error as a splitting criterion, unlimited depth and 35 features used at each node).

4 Implementation and results

4.1 Databases
Existing gaze databases We have used three separate databases: HPEG by Asteriadis et al.
[2], ULM head and gaze by Weidenbacher et al. [34] and PUT by Kasinski et al. [20]. HPEG
database is given as videos. For this experiment we have extracted frames with relevant gaze
variation. Out of these databases we have selected only images that include a head angle (on
any direction) smaller than 300. While ULM and PUT databases include ground truth for
landmarks (ULM only iris center and inner and outer corners, while PUT all eye landmarks),
we have annotated the frames selected from HPEG database.

Eye-Chimera database Although there exist databases designed for the study of eye gaze,
none deals with the specifics of the seven EAC situations (including the neutral – visually
defocused pose). We have thus constructed the Eye-ChIMERA (Eye part from the Cognitive
process Inference by the Mutual use of the Eye and expRession Analysis) database. It con-
tains several parts, both videos and still and was recorded with Canon 600D (640×480 res-
olution) and Panasonic HDC-TM 60 (1920×1080) cameras on 40 subjects in the 20-30 age
range. Illumination is typical indoor and coming from one side. For the unconstrained part,
the subjects were given various queries, as recommended in [3]. For the simulated part the
subjects were asked to follow specific movement patterns. While all data has been recoded
as video, for now, the movements between consecutive EACs are identified and cropped out.
The first and last frame of each move are selected and labelled with the corresponding EAC
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Table 1: Iris center localization accuracy measured as percentage of the inter-ocular distance
(stringent criterion [19]).

Method Valenti et al. [30] Florea et al. [16] [16] + improvement
Database ε = 0.05 ε = 0.1 ε = 0.05 ε = 0.1 ε = 0.05 ε = 0.1

Eye-Chimera 16.1 % 50.5% 42.7% 68.9% 65.3% 78.7%
HPEG 24.6 % 55.7% 53.5% 78.8% 71.1% 83.2%
ULM 50.1 % 77.0% 32.5% 74.1% 76.6% 92.7%

tag. The five eye landmarks are manually marked by three experienced annotators and their
average was taken as ground truth. In all, the Eye-Chimera database comprises 1172 frontal
face images, grouped according to the 7 gaze directions, with a set of 5 points marked for
each eye: the iris center and 4 points delimiting the bounding box.

4.2 Eye landmark detection

Training We have trained the eye landmark localization system (with all four stages) on
the PUT database (where 1000 images were randomly selected). Testing was done separately
on the Eye-Chimera (1172 images), HPEG (233 images) and ULM (335 images).

Evaluation procedure The standard measures for evaluation of the localization accuracy
are the stringent criterion for the eye centers [19], ε , and the proximity measure [12] for
multiple landmarks, me. Formally, this two are given by:

ε =
max{εL,εR}

Deye
; me =

1
t ·Deye

t

∑
i=1

εi (5)

In the left hand part of the equations above, εL and εR are the Euclidean distances between
the ground truth left/right eye center and the determined left/right eye center, while Deye is
the distance between the ground truth eyes centers. In the right hand part, εi are the point
to point errors for each individual landmark location and t is the number of feature points
searched (10 in our case, thus the measure will be referred as me10).

Iris center localization In table 1 we report the comparative performance of the state of
the art method [30], the initial localization accuracy [16] and the overall improved results.

Eye landmark localization For this specific task we have compared our algorithm with
the same landmarks returned by state of the art methods described in [31] and [36]. The
comparison error may be seen in figure 3. Full results are in supplementary materials 2,3
and 4. As one can see, in all cases we provide at least the same accuracy as state of the
art methods, but more often we outperform them. The most striking difference is on the
Eye-Chimera database, where we noted that other methods significantly under-performs for
gaze variation on both horizontal and vertical. Nevertheless, the proposed method produces
improvement, even small, on all considered databases.
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Figure 3: Eye landmarks localization and comparison with prior art on Eye-Chimera, HPEG
and ULM databases.

Figure 4: Examples of eye landmarks localization from Chimera database. The first four are
correct localization (dme10 < 0.05), while the last two are examples with dme10 > 0.1.

4.3 EAC recognition
For the EAC recognition, as only the Eye-Chimera database is available, given the 2340
available eyes (2 eyes per image) we have selected 30 images (i.e. 60 examples) from each
category and trained the random forest on the ground truth data.

We consider two type of recognition situations: three cases (looking left corresponding
to constructed type of mental activity, looking straight - defocused and looking right - re-
membering) and 7 cases (described in figure 1). To have an idea of the chosen recognition
approach upper limit, we tested it on the manual landmarks, achieving a recognition rate of
91.2% for the three case and of 77.0% for the 7 case situation. When applied on the actual
data (from which the training cases were removed), the recognition rate was 78.57% for
three classes and 48.64% for 7 classes. The confusion matrices are presented in table 2.
Individually, only landmarks produced a 43.93% recognition rate for the 3–case and 71.27%
for the 7–case, while only projections lead to 34.45% and respectively 55.94%.

4.4 Discussion
First, we have to point out that for the eye landmarks localization, when challenged by gaze
variation and limited head angle, the hereby proposed method is an improvement compared
to state of the art methods [31] and [36] both in accuracy and in duration. The multistage
procedure also improves eye center localization, outperforming state of the art method [30].

In terms of the EAC recognition rate, noting that the training/testing cases ratio is 1
train example to 6 testing ones, we used a stringent test, pointing to most likely a lower
limit of the method. Next, since the recognition rate is almost twice as large for the 3–case
scenario than for the 7–case scenario, we may conclude that gaze direction separation on left
- right direction is more at hand than separation on up-down direction; this conclusion is also
confirmed by other gaze direction methods surveyed in [17].

Currently, the proposed algorithm is based on a Matlab implementation, with some de-
pendencies in binary format, running on a single core i7 at 2.7 Ghz in 450 msec. This time
includes face detection (7 msec), initial eye center localization (7 msec) and EAC classifica-
tion (18 msec). Thus, the landmark localization method requires around 40 msec for each of
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Table 2: Confusion matrix for the 3 cases scenario (when we focus on the mental activity
type) and for the 7 cases when we look for both activity type and information type - complete
EAC (using the acronyms from figure 1).

Gaze dir Activity No. Cases Center Right ⇒ Left ⇐
Center Defocused 608 349 156 103
Right Remembering 658 43 537 78
Left Constructing 656 19 91 546

Gaze dir EAC Cases Center ⇑⇒ ⇐⇑ ⇒ ⇐ ⇓⇒ ⇐⇓
Center VD 608 349 118 82 36 18 2 3

UpRight, ⇑⇒ VR 232 12 169 4 39 6 1 1
UpLeft ⇐⇑ VC 220 5 8 137 18 94 8 10

Right ⇒ AR 224 11 107 1 85 13 5 2
Left ⇐ AC 220 8 8 74 13 113 2 2

DownRight ⇓⇒ ID 202 20 26 3 82 37 23 11
DownLeft ⇐⇓ K 216 6 2 44 29 98 7 30

the ten landmarks, a time which is much lower than state of the art methods ([31] requiring
≈ 2500 msec/landmark or [36] with ≈ 200msec/landmark). These results suggest that a C
implementation will take less than 50 msec/face, making it possible to discriminate between
posed and unconstrained non-visual gaze directions.

5 Conclusion
In this paper, we presented in premier an eye accessing cue classifier that can discriminate
with high accuracy in a 3-case challenge and with medium accuracy in a 7-case challenge on
a newly introduced and annotated database. The recognition method is completely automatic
and makes use of eye landmarks found with a novel method that may be beneficial for other
eye-related tasks.
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[32] P. Viola and M. Jones. Robust real-time face detection. IJCV, 57(2):137–154, 2004.

[33] P. Wang, M. B. Green, Q. Ji, and J. Wayman. Automatic eye detection and its validation.
In IEEE Workshop on FRGC, CVPR, page 164, 2005.

[34] U. Weidenbacher, G. Layher, P. Strauss, and H. Neumann. A comprehensive head pose
and gaze database. In IET International Conference on Intelligent Environments., pages
455–458, 2007.

[35] L. Wolf, Z. Freund, and S. Avidan. An eye for an eye: A single camera gaze-
replacement method. In CVPR, pages 817 – 824, 2010.

[36] X. Zhu and D. Ramanan. Face detection, pose estimation, and landmark localization in
the wild. In CVPR, pages 2879 – 2886, 2012.


