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Abstract

Feature representation is important for human action recognition. Recently, Wang et
al. [25] proposed dense trajectory (DT) based features for action video representation and
achieved state-of-the-art performance on several action datasets. In this paper, we im-
prove the DT method in two folds. Firstly, we introduce a motion boundary based dense
sampling strategy, which greatly reduces the number of valid trajectories while preserves
the discriminative power. Secondly, we develop a set of new descriptors which describe
the spatial-temporal context of motion trajectories. To evaluate the performance of the
proposed methods, we conduct extensive experiments on three benchmarks including K-
TH, YouTube and HMDBS51. The results show that our sampling strategy significantly
reduces the computational cost of point tracking without degrading performance. Mean-
while, we achieve superior performance than the state-of-the-art methods by utilizing our
spatial-temporal context descriptors.

1 Introduction

Automatic recognition of human activity in videos has been an active research area in recent
years due to its wide range of potential applications, such as smart video surveillance, video
indexing and human-computer interface. Though various approaches have been proposed
and many progresses have been achieved, it still remains a challenging task due to its large
intra-class variations, clutter, occlusion and other fundamental difficulties [19].

The most important problem in action recognition is how to represent an action video.
The approaches for action video representation can be roughly divided into four categories:
(1) human pose based approaches which utilize human structure information [1]; (2) global
action template based approaches which capture appearance and motion information on the
whole motion body [4, 21]; (3) local feature based approaches which mainly extract valid
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space-time cuboids [6, 12, 24]; (4) unsupervised feature learning based methods which learn
the representation by hierarchical networks [8, 14].

Among most of the state-of-the-art methods, local spatial-temporal feature with bag-
of-features (BoF) framework is perhaps the most popular and successful representation for
action recognition [26]. Laptev [13] developed space-time interest points (STIP) by extend-
ing the Harris detector to 3D domain. Dollar et al. [6] detected space-time salient points
by applying 2D spatial Gaussian and 1D temporal Gabor filters. Wang et al. [23] densely
sampled cuboids at regular positions and scales. For descriptors, well-known approaches
include HOG/HOF [12], Cuboids [6], HOG3D [9] and so on.

Recently, Wang et al. [24] proposed dense trajectory (DT) and a novel descriptor named
motion boundary histogram (MBH) for action recognition. The motion boundary represents
the gradient of optical flow which is initially introduced in the context of human detection [5].
A large number of experiments on nine popular human action datasets demonstrated the
excellent performance of this approach [25]. The difference between the results of dense
cuboids and DTs interests researchers. The superiority of DT compared to dense cuboids
can be partly explained by the mechanism of human visual fixation system, in which moving
objects remain in visual focus for a sustained amount of time through smooth pursuit of eye
movements [15, 17]. We will give a visualized analysis in Section 2. Though its great power,
the DT method is expensive in memory storage and computation due to the large number of
dense sampled points.

In this paper, we first develop a motion boundary based sampling strategy named DT-
MB to refine dense trajectory method. We start from densely sampled patches in a frame.
Meanwhile, a binary motion boundary image is yielded from optical flow. Then we delete
those regions that without motion boundary foregrounds. Central points of the rest patches
are refined by the average location of foregrounds. Our DT-MB is partly motivated by the
fact that those trajectories on motion boundary are the most meaningful ones, which is also
implied by the superior performance of MBH [25]. Using our sampling method, the number
of DTs can be sharply reduced without hurting the performance.

In addition, to enhance the discriminative power of DT based representation, a group of
spatial-temporal context descriptors for trajectories are proposed which are partly inspired
by [20, 27]. In [27], a descriptor based on co-occurrence HOG (CoHOG) is presented for
human detection. Our motivation is that motion and appearance context in videos can pro-
vide important cues for action recognition. The novel context descriptors are comprised
of spatial and temporal context descriptors. Spatial context descriptors contain spatial Co-
HOG (S-CoHOG) which depicts complex structure of raw image, spatial co-occurrence HOF
(S-CoHOF) which conveys complex motion structure, and spatial co-occurrence MBH (S-
CoMBH) who captures the complex gradient structure of optical flow. Temporal context
descriptors include temporal CoHOG (T-CoHOG) which expresses appearance changes a-
long with time, temporal CoHOF (T-CoHOF) which conveys motion direction changes and
temporal CoMBH (T-CoMBH) which extracts the changes of gradient orientations of flow.

It’s worth noting that our spatial-temporal context descriptors are very different from
spatial-temporal context information [28] and pairwise co-occurrence local spatial-temporal
features [3]. Their methods try to capture spatial geometric relations among the features or
temporal evolution of human poses by the temporal context information, while our descrip-
tors aim to convey the local appearance and motion changes in the spatial-temporal context
of a pixel. The spatial-temporal context information we used is more low-level than others.

The main contributions of this paper can be summarized into two folds. First, we devel-
op a motion boundary based sampling strategy to reduce the number of dense trajectories
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Figure 1: The 3rd and 1st rows: raw patches in cuboids with and without temporal slowness.
The 2nd and 4th rows: motion boundary images corresponded to each patch.

which can save memory and computation without degrading performance. Second, a group
of spatial-temporal context descriptors are presented for action video representation. Exper-
iments show that our method outperforms several recent methods on three popular datasets.

2 Dense Trajectories on Motion Boundary

Here, we give a brief review of dense trajectory method [25]. It mainly contains three steps:
dense sampling, point tracking and trajectory checking. First, points are sampled in current
frame on a grid by a step size w at S spatial scales. In order to track successfully, points
in homogeneous areas are filtered out by checking the eigenvalues of their Harris matri-
ces. Second, the valid points are tracked by median-filtered optical flow. Tracked points
of consecutive frames at scale s are concatenated to form trajectories: (F’,P’, |, ...), where
Pf = (x¥,y}) represents spatial position. Some trajectories are shown in Fig. 2. Finally, once a
trajectory’s length reaches L, its average position drift and variation will be checked. Those
trajectories with tiny or large mean drift and variation will be pruned, since they usually
correspond to static or erroneous trajectories. Descriptors are extracted within a N X N x L
cuboid aligned by trajectories. To represent the video clip, a global histogram is yielded via
the BoF framework. There exist two advantages for DT. One is that dense sampling can yield
richer description of the action space than sparse interesting points (e.g. KLT, STIP). The
other is that it’s consistent with human visual fixation system to extract feature along with
trajectories.

2.1 Visual Fixation Property of DT

Visual fixation is the maintaining of the visual gaze on a single location, also known as
smooth pursuit or temporal slowness [15]. A number of species, including humans, other
primates, cats and rabbits can perform this mechanism by three categories of eye movements:
micro-saccade, ocular drift, and ocular micro-tremor. Dense trajectory based approaches
match the fixation mechanism very well as illustrated in the 3rd row of Fig. 1.

There are two properties for temporal slowness in a view of video representation at least.
On the one hand, it makes the feature robust to velocity change. Obviously, the appearance
features in a cuboid with smooth pursuit will be very similar despite the difference of veloci-
ty. Motion features also keep similar after normalization. On the other hand, as shown in the
last two rows of Fig. 1, more meaningful appearance and motion information are cap-
tured with temporal slowness. For these reasons, DT can always outperform dense cuboids.
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(a) Sample frame (b) Sampled points by DT (c) Trajectories by DT

(d) Motion boundary image  (e¢) Sampled points by DT-MB  (f) Trajectories by DT-MB

Figure 2: Comparison of original DT and our Dense Trajectories on Motion Boundary.

2.2 Dense Trajectories on Motion Boundary

A limitation of DT is that too many points need to be tracked in the original dense sampling
criterion [25]. However, only a few of them may lead to valid trajectories. We hold that those
points on the motion boundary are the most discriminative ones. This is indeed partly implied
by MBH descriptor [25] and motion boundary contour system (BCS) in neural dynamics of
motion perception [7]. Our DT-MB sampling strategy constrains the sampled points on large
magnitude regions of motion boundary image in the sampling step.

The implementation of dense trajectories on motion boundary (DT-MB) is straightfor-
ward. It needs two successive frames to sample points which is different from original DT.
A comparative example is illustrated in Fig. 2. Fig. 2(d) shows a motion boundary image
which indeed is the gradient magnitude of optical flow. After a thresholding operation on
it, a mask is generalized to refine the original DT sampled points. Particularly, we create
the mask by Otsu’s algorithm [18] empirically. Those regions without motion boundary
foregrounds will be deleted. Central points of the remaining patches will be refined by the
average location of foregrounds. It’s worth noting that the motion boundary image is a mid-
dle result of DT, so we never need to add complexity. As shown in the 2nd column of Fig. 2,
our approach removes a large number of points which are not on the motion foreground. The
3rd column of Fig. 2 exhibits the trajectories from historical points by DT and DT-MB. The
red marks are the end points of trajectories. Note that we do not force all the points of tra-
jectories on the motion boundaries in case of inaccurate tracking. The detailed comparisons
of complexity and performance are given in Section 4.

3 Spatio-temporal Context Descriptor

Pixels in videos are not lonely. It’s beneficial to jointly encode the spatial-temporal context
of a pixel. In this section, we present our spatial-temporal context descriptors which consist
of spatial and temporal CoHOG, CoHOF and CoMBH.
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Figure 3: An example of spatial co-occurrence features with grid of size ng X ng X nr.

3.1 Spatial Context Descriptors

Our spatial context descriptors aim to capture complex spatial structures of appearance and
motion. We employ three kinds of co-occurrence descriptors for this motivation.

S-CoHOG.The spatial CoHOG is initially introduced in the context of pedestrian de-
tection [27]. Specially, it uses pairs of gradient orientations as units and employs the co-
occurrence matrix for image representation. The co-occurrence matrix expresses the joint
distribution of gradient orientations between anchor points and given offset points over a
patch as illustrated in Fig. 3. Considering two offsets, shown as the red solid circles in
Fig. 3, each pair of which will vote for its own co-occurrence matrix.

S-CoHOF and S-CoMBH. The implementations of these are very similar with S-CoHOG
except for the inputs. S-CoHOF applies spatial pairs of optical flow orientations as units and
S-CoMBH utilizes spatial pairs of the gradient orientations in the horizontal and vertical flow
components, separately. So there will be two S-CoMBH components, namely S-CoMBHx
and S-CoMBHy.

In our case, we use two offsets (i.e., (2,0) and (0,2)) and process the trajectory cuboids
pixel-wise with grid of size ng X ng X ny. Specially, a co-occurrence matrix C over a m X n
patch 7, parameterized by an offset (x,y), is defined as:

28 GG g o ) = p and O(i : _
C . — 2 , 1 l?])_pan (l+x7.]+y)_q’ 1
wlpa) =) ), { 0, otherwise. M

where p and g are the quantization bins, G(i, j) is the gradient magnitude and O(i, j) is the
gradient orientation at position (i, j). As shown in Eq. (1), the average gradient magnitude is
used to weight co-occurrence matrices. To reduce the boundary effects, we also apply linear
interpolation. Finally, a 2 X npj,s X fipins X Be X N X ny dimensional vector is created for a
cuboid by accumulating all the flatten matrices.

3.2 Temporal Context Descriptors

We expect the novel temporal context descriptors to depict clear motion and appearance
changes from successive patches. Three temporal co-occurrence descriptors are designed
for this purpose, namely T-CoHOG, T-CoHOF and T-CoMBH. Fig. 4(a) shows the basic
units of T-CoHOG and T-CoMBH, and Fig. 4(b) is the case of T-CoHOF.

T-CoHOG. We build T-CoHOG via the temporal pairs of gradient orientations in raw
frames. The anchor points are first tracked by middle-filtered optical flow with a given tem-
poral offset, and then the corresponding points in two frames will vote for the co-occurrence
matrices. We also use the mean gradient magnitude and linear interpolation to weight the
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(a) T-CoHOG and T-CoMBH (b) T-CoHOF
Figure 4: Temporal co-occurrence descriptors. (a): temporal pairs of gradient orientations in
T-CoHOG or T-CoMBH. (b): temporal pairs of optical flow orientations in T-CoHOF.

desired matrices. As illustrated in Fig. 4(a), the change of appearance within a certain time
(i.e., At and 2Ar) can be captured clearly.

T-CoHOF. T-CoHOF is built by using the temporal pairs of optical flow orientations.
One can imagine that it needs three frames at least to obtain the basic units of T-CoHOF. The
implementation of T-CoHOF is similar with T-CoHOG. As can be seen from Fig. 4(b), the
alteration of motion orientations is reflected in the co-occurrence of basic units.

T-CoMBH. The temporal pairs of gradient orientations in the horizontal and vertical op-
tical flow components are used for T-CoMBH. We can also get T-CoMBHx and T-CoMBHy,
separately. The computational processes of them are similar with T-CoHOG as shown in
Fig. 4(a). T-CoMBH expresses the local changes of motion boundary intensity.

Tracking is a necessary step in dense trajectory based approach, so our descriptors can
benefit from the computational process of DT. It is worth noting that our temporal co-
occurrence descriptors may share some common features with temporal grids. Both of them
can capture temporal structure, but ours are embodied in more low-level than temporal grids,
and they can be used with temporal grids at the same time. In this paper, we also use the grid
of size ngs X ng X ng to yield all the temporal co-occurrence descriptors and we only use the
temporal offset 2A¢ with Ar equals to 1.

4 Experiments

We conduct experiments on three popular human action datasets, namely KTH, YouTube
and HMDBS51. In this section, we first give a brief introduction for these datasets, and then
compare the performance and complexity of DT and DT-MB. Finally, we give a comprehen-
sive comparison among our novel descriptors and other individual descriptors of trajectory.

4.1 Datasets and Setup

These datasets we used are collected from controlled experimental setting and web videos.
Some sample frames are illustrated in Fig. 5. We totally evaluate more than 10,000 video
clips for our experiments.

The KTH dataset [22] is one of the most popular datasets in action recognition, which
consists of 2,391 video clips acted by 25 subjects. It contains 6 action classes: walking,
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Figure 5: Sample frames from KTH, YouTube and HMDBS5I1.

Jjogging, running, boxing, hand-waving, and hand-clapping. Actions are recorded at 4 en-
vironment settings: outdoors, outdoors with camera motion, outdoors with clothing change,
and indoors. We follow the experimental settings in [22] where clips are divided into the
training set (16 subjects) and the testing set (9 subjects).

The YouTube dataset [16] is collected from YouTube videos. It contains 11 action cat-
egories: basketball shooting, volleyball spiking, trampoline jumping, soccer juggling, horse
back riding, cycling, diving, swinging, golf-swinging, tennis-swinging, and walking (with a
dog). A total of 1,168 video clips are available. Following [16], we use Leave-One-Group-
Out cross-validation and report the average class accuracy.

The HMDBS51 dataset is a large action video database with 51 action categories. Total-
ly, there are 6,766 manually annotated clips which are extracted from a variety of sources
ranging from digitized movies to YouTube [11]. It contains facial actions, general body
movements and human interactions. It is a very challenging benchmark due to its high intra-
class variation and other fundamental difficulties. We follow the experimental settings in [11]
where three train/test splits are available.

We employ the standard BoF framework to represent videos. In particular, we set the
parameters (w,S,N,L,ns,n;) mentioned in previous section to be (5,8,32,15,2,3). Given
all the local features, codebooks with size 4k are constructed separately using k-means from
subsets of 100k randomly selected features. Vector quantization is used for each descriptor
and the statistical histograms of visual word occurrences are used as video representations.

4.1.1 Setting of Classification

For classification we use the RBF-SVM with a multi-channel y? kernel which is slightly
different from [12]. The multi-channel Gaussian kernel is defined by:

K(H;,H;) = exp( azé —D.(Hf ,H)) (2)
ce

where D.(Hf ,H;) is the 2 distance between two video representations H; and H j in the cth
feature channel. A, is the average value of all the distances in training set for the cth channel.
« is a scaling factor ranging from O to 1 which is obtained by cross-validation, and we set it
to be 1 when dealing with single channel feature. For multi-class classification, we use the
one-against-rest approach and select the class with the highest score.
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4.2 Experimental Results and Analysis
4.2.1 DT versus DT-MB

Our first purpose is to investigate the effect caused by constraining dense trajectories on the
motion boundary. We compare the recognition accuracy, frame rate in the whole process
of feature extraction including the time of I/O (fps), the average tracking time of dense
points per frame (7;,4) and the average number of trajectories per video clip. Specially,
we quantize orientations into eight bins (an additional zero bin is added for HOF) with full
orientation and weight with magnitudes. For the accuracy comparison, we only report the
performance of all the raw DT descriptors combination by using (2). We evaluate the fps and
Tirack Within 10 videos randomly selected from each dataset and the run-time is obtained on
an Acer laptop with a 2.5 GHz Intel Core i5 CPU and 4 GB RAM.

Table 1: Comparison of DT and DT-MB with all the raw DT descriptors.

| Datasets | | Tirack(ms) | Trajectories/clip [ fps | Accuracy (%) |
HMDBS51 | DT 46.33 16,133 343 46.60
DT-MB 12.82 4,512 4.63 46.03
YouTube | DT 39.01 37,542 4.71 84.25
DT-MB 6.60 10,878 5.85 85.10
KTH DT 11.72 2,185 12.85 94.81
DT-MB 4.00 1,178 16.05 94.79

We show the comparison with original DT in Table 1. The computational cost decreases
significantly for tracking points by using DT-MB. It is about 6 times less than DT on the
YouTube. The numbers of trajectories also fall dramatically on all datasets. Specially, it is
reduced by about 4 times on the HMDBS51 dataset. The average class accuracies of DT and
DT-MB on all the three datasets are very similar and it is even better than DT on the YouTube
dataset. When comparing the confusion matrices of DT and DT-MB on the YouTube, we
find out that the accuracies degrade only for those actions which are strongly related to the
backgrounds like fennis-swinging and volleyball spiking. Overall, our DT-MB is able to save
memory and time while keeping the accuracy.

4.2.2 Spatio-temporal Context Descriptors

We evaluate the raw DT, spatial and temporal context descriptors using our DT-MB sampling
scheme. We just quantize orientations into four bins except an additional bin for HOF in this
evaluation. One can certainly use eight bins which is not the key point in our evaluation.
The performances of all descriptors (i.e., HOG, HOF, MBH and their spatial and temporal
co-occurrence descriptors) are compared in Fig. 6. The results for MBH, S-CoMBH and
T-CoMBH are obtained by combining x and y channels.

The HOG descriptor by adding spatial-temporal context (S-Co and T-Co) gives better
results than original HOG. The performance degrades by using temporal context for HOF
while aggrades by joining spatial context. S-CoMBH works always better than MBH while
T-CoMBH sometimes does not. As can be seen from Fig. 6, a striking conclusion is that tem-
poral context information for pure spatial feature (i.e., HOG) is more effective, and spatial
context information for pure temporal features (i.e., HOF and MBH) is better.

Descriptor combination. Table 2 reports the results obtained by combining descriptors
in the standard BOF framework. The baseline [25] is the combination of Trajectory, HOG,
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Figure 6: Percentage accuracies of all the individual descriptors on three datasets. “Non-Co”
corresponds to the original descriptors in [24].

HOF and MBH, we reimplement it in our evaluation. When adding our spatial-temporal
context descriptors to the baseline there is an improvement of 0.47%, 2.05% and 3.32%
on KTH, YouTube and HMDBS51, separately. The combination of all spatial-temporal con-
text descriptors can work better than that of original descriptors. The best combination is
S-CoMBH+T-CoMBH for KTH, trajectory+S-CoHOG+T-Co for YouTube, and all the de-
scriptors for HMDBS51. The improvements demonstrate that spatial-temporal context con-
tains useful complementary information.

Table 2: Different combinations of descriptors using standard BOF.
Combination || KTH | YouTube | HMDBS51

Trajectory+HOG+HOF+MBH || 93.63 84.25 45.90
HOG+HOF+MBH || 93.98 83.48 45.88
Trajectory+S-Co + T-Co || 94.79 85.70 48.98

S-Co + T-Co || 94.21 85.33 48.89

All combined || 94.10 86.30 49.22

Best combined || 95.60 86.56 49.22

4.3 Comparison with State-of-the-Art Results

Table 3 presents the comparison to several recent results on each dataset. For fair compari-
son, we do not show the spatio-temporal pyramids (STP) post-processing results for Wang’s
approach which is also inferior to ours. Our method outperforms all these previously report-
ed results. In particular, on the HMDBS51 dataset, the improvement over the best reported
result to date! is about 3%.

Table 3: Compare our results to the state-of-the-art results without STP.

KTH YouTube HMDBS51

Laptev et al. [12] | 91.8% Liu et al. [16] 71.2% Kuehne et al. [11] 23%

Le et al. [14] 93.9% Leetal. [14] 75.8% | Sadanand et al. [21] | 26.9%

Jietal. [8] 90.2% B.etal. [2] 76.5% Orit et al. [10] 29.2%

Wang et al.[25] 95% Wang et al.[25] | 84.1% Wang et al.[25] 46.6%

Our Method | 95.6% | Our Method | 86.56% Our Method | 49.22%

Thttp://serre-lab.clps.brown.edu/resources/HMDB/eval/
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5 Conclussion

This paper first introduced a new dense sampling approach for dense trajectories. It con-
strains sampled points on the motion boundary which significantly save memory and time
cost without degrading performance. Another contribution is the new spatial-temporal con-
text descriptors which make full use of spatial and temporal co-occurrence information. The
comparisons of the individual descriptors demonstrate that temporal context information for
pure spatial feature is more effective, and spatial context information for pure temporal fea-
tures is beneficial. Finally, our method improves the performance of current action recogni-
tion systems on three challenging datasets.
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