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Abstract

We present a novel cross-dataset action recognition framework that utilizes relevant
actions from other visual domains as auxiliary knowledge for enhancing the learning sys-
tem in the target domain. The data distribution of relevant actions from a source dataset is
adapted to match the data distribution of actions in the target dataset via a cross-domain
discriminative dictionary learning method, through which a reconstructive, discrimina-
tive and domain-adaptive dictionary-pair can be learned. Using selected categories from
the HMDBS51 dataset as the source domain actions, the proposed framework achieves
outstanding performance on the UCF YouTube dataset.

1 Introduction

In real-world applications, due to the high price of human manual annotation and environ-
mental restrictions, sufficient training data that stay in the same feature space or share the
same distribution with the testing data cannot always be guaranteed, in which case insuf-
ficient training data can limit the potential discriminability of the trained model. Typical
examples can be found in [3], [8], [19], where only one action template is provided for
each action class for training, and [15], where training samples are captured from a different
viewpoint. In these situations, obtaining more labeled data is either impossible or expensive,
while seeking for an alternative way of using data from other domains as compensation can
be seen as a possible and economic solution.

Our work is inspired by two facts of the human vision system. The first fact is that hu-
mans are able to learn tens of thousands of visual categories in their life, which leads to the
hypothesis that humans achieve such a capability by accumulated information and knowl-
edge [7]. Another fact is that human’s visual impressions towards the same action or the
same object comes from a wide range, e.g., an action seen from 2D static images vs. the same
action seen from 3D dynamic movies or an object seen from real-world scenes vs. the same
object seen from low-resolution online images. These facts can be explained in the computer
vision language as the human vision system possesses the ability of spanning the intra-class
diversity of the original training instances through transferring prior knowledge. Motivated
by the above two facts, we introduce a new action recognition framework that utilizes rele-
vant actions from other domains as auxiliary knowledge (motivated by the first fact) to span
the intra-class diversity of the original learning system (motivated by the second fact). In
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Figure 1: Flowchart of the proposed cross-domain action recognition framework. Local
dense trajectory features are extracted from both the target domain actions and the source
domain actions, followed by which the local features are coded by LLC. Through the pro-
posed discriminative cross-domain dictionary learning technique, a dictionary pair for both
domains is learned from the middle-level action representations, so that actions of the same
category from different domains possess similar representations after being coded by the
learned dictionary pair.

addition to manually annotated actions in the target domain, labeled actions from a different
domain are provided as the source domain actions. Based on the recent success of dictionary
learning methods in solving computer vision problems, we present a discriminative cross-
domain dictionary learning (DCDDL) technique to learn a reconstructive, discriminative and
domain-adaptive dictionary pair for data under different distributions. The flowchart of the
proposed framework is shown in Figure 1.

Transfer learning (a.k.a., cross-domain learning, domain transfer, domain adaptation)
approaches begin to attract increasing interests in the computer vision community in recent
years due to the data explosion on the Internet and the growing demands for visual computa-
tion tasks. Domain transfer is used to address the problem of video concept detection in [25]
and [5]. The former one utilized the Adaptive Support Vector Machines (A-SVMs) to adapt
one or more existing classifiers of any type to a new dataset, and the latter proposed a Do-
main Transfer Multiple Kernel Learning (DTMKL) method to simultaneously learn a kernel
function and a robust SVM classifier by minimizing both the structural risk function of SVM
and the distribution mismatch of labeled and unlabeled data in different domains. Duan et
al. [6] considered to leverage large amounts of loosely labeled web videos for visual event
recognition using the Adaptive Multiple Kernel Learning (A-MKL) to fuse the information
from multiple pyramid levels of features and cope with the considerable variation in feature
distributions between videos across two domains.

Recently, dictionary learning for sparse representation has attracted much attention. It
has been successfully applied to a variety of computer vision tasks, e.g., face recognition
[24] and image denoising [31]. Using an over-complete dictionary, sparse modeling of sig-
nals can approximate the input signal by a sparse linear combination of items from the dic-
tionary. Many algorithms [13], [23], [24] have been proposed to learn such a dictionary
according to different criteria. The K-Singular Value Decomposition (K-SVD) algorithm
[1] is a classical dictionary learning algorithm that generalizes the K-means clustering pro-
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cess for adapting dictionaries to efficiently learn an over-complete dictionary from a set of
training signals. The K-SVD method focuses on the reconstructive ability, however, since
the learning process is unsupervised, the discriminative capability is not taken into consid-
eration. Consequently, methods that incorporate the discriminative criteria into dictionary
learning were proposed in [28], [26], [18], [17], [18], [2]. In addition to the discriminative
capability of the learned dictionary, other criteria designed on top of the prototype dictionary
learning objective function include multiple dictionary learning [29], category-specific dic-
tionary learning [27], etc. Different from most dictionary learning methods, which learn the
dictionary and the classifier separately, the authors of [28] and [10] unified these two learn-
ing procedures into a single supervised optimization problem and learned a discriminative
dictionary and the corresponding classifier simultaneously. Taking a step further, Qiu et al.
[20] and Zheng et al. [30] designed dictionaries for the situations that the present training
instances are different from the testing instances. The former presented a general joint op-
timization function that transforms a dictionary learned from one domain to the other, and
applied such a framework to applications such as pose alignment, pose and illumination esti-
mation and face recognition. The latter achieved promising results on the cross-view action
recognition problem with pairwise dictionaries constructed using correspondences between
the target view and the source view. To make use of some data that may not be relevant
to the target domain data, Raina et al. [21] proposed a method that applies sparse coding
to unlabeled data to break the tremendous amount of data in the source domain into basic
patterns (e.g., edges in the task of image classification) so that knowledge can be transferred
through the bottom level to a high level representation.

Our approach differs from the above approaches in such aspects that it more compre-
hensively learns pairwise dictionaries and a classifier while considering the capacity of the
dictionaries in terms of reconstructability, discriminability and domain adaptability. Addi-
tionally, corresponding observations across the domains are not required in our framework.
Most previous knowledge transfer algorithm focus on the situations where the target domain
is incomplete, but have not attempted to utilize other domain data as an aide for enhancing
present categorization systems, in our approach, the learned classifier in the target domain
becomes more discriminative against intra-class variations as a result of the learning process
that integrates with source domain data. Our work makes the following contributions:

* We present a novel cross-domain action recognition framework that attempts to en-
hance the performance of the original recognition system by spanning the intra-class diver-
sities of the target domain training actions using actions from the source domain.

* The proposed discriminative cross-domain dictionary learning technique copes with
the feature distribution mismatch problem across different domains by learning a domain-
adaptive dictionary pair that transfers data under different distributions into the same feature
space.

* Our approach does not require correspondence annotations across different domains,
so that it can be adapted to solve many real-world transfer learning problems.

The remainder of this paper is organized in the following way. In Section 2, the pro-
posed knowledge transfer technique is described in detail including dictionary learning, dis-
criminative cross-domain dictionary learning, optimization and classification. Experimental
results on the human action recognition task and performance comparisons with state-of-the-
art methods are demonstrated in Section 3. Finally, the conclusion of this work is given in
Section 4.
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2 Knowledge transfer via discriminative dictionary
learning

2.1 Dictionary learning

Let Y; be the set of target domain n-dimensional input signals, which contain N training
instances, i.e., ¥; = [yt1 , ytz7 w0, ¥N] € RN Learning a reconstructive dictionary for obtaining
the sparse representation of the target domain signals ¥; can be accomplished by solving the
following optimization problem:

(D, X;) =argmin ||Y; — D, X; ||3
Dy, X (D
s.t.Vi, fo||0 <T,

where D, = [d},...d"] € R"K: denotes the target domain dictionary and X; = [x],..xN] €
REN denotes the set of sparse signals. The number of dictionary items K; is set to sig-
nificantly exceed the number of training instances N to ensure that the dictionary is over-
complete. T is the sparsity constraint factor that limits the number of non-zero elements in
the sparse codes, so that the number of items in the decomposition of each signal x; is less
than 7.

The choice of a method for dictionary learning critically determines the performance of
sparse representation. The K-SVD algorithm [1] is a popular and efficient dictionary learning
method that focuses on minimizing the reconstruction error. Some discriminative approaches
[28], [26], [18], [17], [16], [2] show their privilege over the K-SVD algorithm by incorporat-
ing extra discriminative terms into the objective function for dictionary learning. However,
the discriminative terms appear to be introduced to these approaches without considering
the data distribution of the training samples, i.e., samples with high confidence possess the
same impact as those with low confidence. Such weakness becomes even more severe when
dealing with data mismatch scenarios. When allocated with discriminative elements under
no smoothness guarantee, performing dictionary learning on both target domain data and
mismatched data from a different feature domain can break the smoothness property of the
original target domain.

2.2 Cross-domain discriminative dictionary learning

In the source domain, the optimization problem for dictionary learning becomes:

(Dy,X;) =arg min ||Y; — D,X;||3
Dy,Xs
. 2)
st Vi ||xio < T,

where Dy = [d!,...d%] € R denotes the source domain dictionary and X, = [x!,..x)] €
REXN denotes the set of sparse signals. By minimizing the reconstruction error terms
|¥; — DX ||3 and ||Y; — D,X;||3 in Equation (1) and Equation (2) separately, the sparse rep-
resentations X; and X; still obey to the original distributions in each respective domain. In
order to force the mismatched sparse representations from different domains into the same
feature space, we combine the objective functions in Equation (1) and Equation (2) in a uni-
fied optimization manner and add extra terms to guarantee the overall smoothness in the new
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feature space:

<D17DSaXtaXS> :argD IDnl)I(l X HYl _DIXIH%

1501 A0S

+||Ys _DSXSH% +|1X; _f(YhYs)XSHIZV
+|X, — £ (Y X)X |7
s, [ [xt]lo, Ixsllo ] < T,

3)

where the function f(-) computes the mapping of correspondence samples (i.e., samples
that share the same class labels while being close to each other) across different domains.
Thus, small values of | X, — f(¥;,Ys)X||% and ||X; — f(Y¥;,Y:)X;||% indicate that those data
points close to each other are more likely to share the same class label in the new target
feature domain and the new source feature domain respectively. Since we are only concerned
with the smoothness within the target domain data, the last term in Equation (3) can be
removed. According to the stated scenario, no manually annotated correspondences between
the target domain data and the source domain data are available in the training phase, thus
f(-) is computed using a category-specific searching method. Assuming both ¥; and Y; are
arranged according to their category labels, we can set c,1 and c} as the numbers of the last
samples in category 1 in the target domain and the source domain respectively, and similarly
c? and ¢? for category 2. Let A; be the transition matrix for category 1 and A, be the
transition matrix for category 2, A| and A; can then be represented by:

c!
Wyhyg) o PO
a=| o - o)
c;] 1 Cxl. o
YO'ye) o WOiys)
FL e+l T BN
Yo T e RO
Ay = j o o )
cz' clt1 cz‘ 2
Yy s ) B ¥(y,' ayib)

where ¥(y!, y{) in each A. can be computed by the Gaussian kernel:

.. 1
¥y, yl) = VT (6)

In order to establish the correspondences across the target domain data y, and the source

domain data yy, the maximum element in each column of A, is preserved and set to 1 while
the remaining elements are set to 0:

Loif Ac(i,j) = max(Ac(:, j))
Ac(i,j) = 0
0, otherwise.
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Given the set of transition matrixes for all the C categories, the global transition matrix A,
can be obtained by filling all the category-specific sub-matrixes into A,:

Ay
Ay

Ac

where all the blank elements are set to 0, so that A is a reversible binary matrix. Assum-
ing A leads to a perfect mapping across the sparse codes X; and X; and each matched pair
of samples in different domains possesses an identical representation after encoding, then
X — AXT||2 = 0, and correspondingly ||¥;” — AY[||2 = 0. Thus Equation (3) can be
rewritten as:
(Dy, Dy, X;,X;) = arg min_||Y, — DX, |3
Dt ,Dy, X; 9)
+IAYDT —=DyX, |13 sV, |xillo < T.

We attempt to further include a discriminative term to the objective function with respect to
the optimal data distribution. Let the classifier F (x) satisfy the following equation:

P = argmin} wi x L{hi, F (33, P)} + 4l PIF, (10)

where L is the classification loss function, /; indicates the target domain labels of xﬁ, P
denotes the classifier parameters and A; is a regularization parameter. As in previous work
[17], [26], [10], [28], the classification error of a linear predictive classifier is included in the
objective function:

<DtaDA';Xt7(I)7P>

. 2
= argDthil)l(’f}QPHZ — D X[

+al|Q—@X |5+ B H—PX3
+IGAT = DX |3 saVi, |xillo < T,

)

where scalers a and f3 are set to control the relative contribution of the terms |Q — ®X; || and
I1H—PX; ||% @ is a linear transformation matrix that maps the the original sparse codes to be
in correspondence with the target discriminative sparse codes Q = [q1,42, - ,qn] € REN
of the input signal ¥;. Specifically, ¢; = [g},q7,-- ,¢K] =[0,---,1,1,---,0] € RX, and the
non-zeros occur at those indices where yi € ¥; and X} € X, share the same class label. Given
Xy = [x1,x2, - ,x¢] and ¥; = [y1,¥2,- - ,¥¢), and assuming x, x2, y; and y, are from class 1,
X3, X4, y3 and y4 are from class 2, xs, xg, y5 and yg are from class 3, Q is then defined with

the following form:

; 12)

SO OO = =
=NeoNeoNeN
SO == OO
SO == OO
—_—_- 0 O OO
- —_- 0 O OO
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and H = [hy,ha, -+ hy] € ROV are the class labels of ¥;, where the non-zero element indi-
cates the class of an input signal within each column ; = [0,---,1,---,0]" € RE. Following
the same example in (12), H can be defined as:

1 1 0 0 0 0
0 0 1 1 0 0 . (13)
0 0 0 0 1 1

2.3 Optimization

Let D; and D; have the same number of dictionary items, i.e., K; = K, we rewrite Equation
(11) as:

< D;,Dg X, , ®,P >=arg min

D;,Dg.X; , @, P
YtT Dt (14)
YA D 2 i ||
I Vao |~ | vaw [XI3 stvilslo<T,

VBH]  \/BP

We further define the left side of Equation (14) as Y = (Y7, (%, AT)T,/aQ",\/BHT)" and
the right side of Equation (14) as D = (D], DI, \/(a) <I>T \/ (B) PT , where column-wise
L, normalization is applied to D, so that Equation (14) can be efﬁ01ently solved by updating
D and its corresponding coefficients X; in an atom by column atom manner. Specifically, each
column d, and the corresponding xf are optimized according to the following formulation:

< diyxk >= argm1n||Ekfdkxt %, s.t.¥i, ||xiflo <T, (15)

dk X,
where E =Y — 3.1 d #xi. The K-SVD algorithm [1] is adopted to solve such a problem:

ULV = SVD(E;)
di=U(:1) (16)
¥ =x(1,1)V(1,),

where U (:, 1) indicates the first column of U and V (1,:) indicates the first row of V.

2.4 Classification

Since Dy, Dy, @ and P are jointly normalized in the optimization procedure, they cannot be
directly applied to construct the classification framework. Also, since P is obtained with
the un-normalized D, simply re-normalizing D is not applicable. According to the lemma in
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[28], D;, Dy, ® and P can be computed as:

D, ={ da/ , d; e dy’ }
T T 1T
1 2 K
D= e e T
L TER T, -
- 0! 02 K }
o Tol> " Tor T
by p! P O }
T T T

Given a target domain query sample yiz its sparse representation x! can be computed
through D,. With the linear classifier 7 (x : P), the label [ j of y; can be predicted as:

l; = argmax(l = Pxi). (18)
j

3 Experiments

To demonstrate the effectiveness of our approach, experiments are conducted using two data
sources, where the UCF YouTube action dataset [14] is treated as the target domain and the
HMDBSI1 dataset [11] is treated as the source domain. Specifically, 7 body movements, in-
cluding ride bike, dive, golf, jump, kick ball, ride horse and shoot ball, are chosen from the
HMDBS51 dataset in correspondence with similar actions in the UCF YouTube dataset. We
run our method on five different partitions of the UCF YouTube dataset, where we randomly
choose all action categories performed by the number of 5/9/16/20/24 actors as the training
actions while using the remaining actions as the testing actions for each partition. Dense
trajectories [22] are extracted from raw action video sequences with 8 spatial scales spaced
by a factor of 1/1/2, and feature points are sampled on a grid spaced by 5 pixels and tracked
in each scale, separately. Each point at frame ¢ is tracked to the next frame 7 4 1 by median
filtering in a dense optical flow field. To avoid the drifting problem, the length of a trajectory
is limited to 15 frames. HOG-HOF [12] and MBH [4] are computed within a 32 x 32 x 15
volume along the dense trajectories, where each volume is sub-divided into a spatio-temporal
grid of size 2 x 2 x 3 to impose more structural information in the representation. Consid-
ering both efficiency and the construction error, the LLC coding scheme [23] is applied to
the low-level local dense trajectory features with 30 local bases, and the codebook size is set
to be 4000 for all training-testing partitions. To limit the complexity, only 200 local dense
trajectory features are randomly selected from each video sequence when constructing the
codebook. The weight & on the label constraint term and the weight § on the classification
error term are set as 4 and 2 respectively, and 50 iterations of SVD decomposition are exe-
cuted during optimization. We compare the performance of LLC, K-SVD [1] and LC-KSVD
[10] with the proposed DCDDL method. Results are reported on both scenarios where the
source domain data are included or excluded in TABLE 1. Among the listed methods, the
dictionary learning process of K-SVD is unsupervised, and the dictionary learning process
of LC-KSVD and DCDDL is supervised. When the source domain data are used by LLC,
K-SVD and LC-KSVD, they are simply treated as extra training data without knowledge
transfer. As shown in Figure 2, the proposed DCDDL method consistently leads to the best
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Table 1: Performance comparison between DCDDL and other methods on the UCF YouTube
dataset.

Algorithm LLC LLC K-SVD K-SVD LC-KSVD LC-KSVD DCDDL
Learning N/A N/A Unsupervised — Unsupervised — Supervised — Supervised — Supervised
Source data No Yes No Yes No Yes Yes

24 actors 86.67%  86.67% 82.22% 77.78% 86.67% 82.22% 88.89%
20 actors 75.42%  70.21% 68.75% 72.08% 75.42% 75.42% 71.50%
16 actors 70.88%  70.17% 63.96% 67.54% 72.08% 72.08% 73.03%
09 actors 61.41%  61.80% 55.70% 59.15% 65.25% 64.72% 66.31%
05 actors 54.10%  53.35% 50.05% 48.88% 56.55% 54.10% 56.66%

performance over other methods under all dataset partitions. Note that the performance of
LLC, K-SVD and LC-KSVD is even decreased when source domain data are used, which
further validates the importance of our cross-domain dictionary learning.

Table 2: Performance comparison of DCDDL with state-of-the-art methods under the leave-
one-actor-out setting on the UCF YouTube dataset.

Methods [14] [9] BoF [22] DCDDL

Results 71.2%  7521% 80.02% 82.52%

It is worth to point out that our dense trajectory features are simple concatenations of
HOG, HOF and MBH, while Multiple Kernel Learning was adopted in [22] to fuse these
descriptors for the final SVM classification. Therefore, directly comparing with results in
[22] does not make any sense.

-—LLC
-4 LLC source

-O- K-SVD

> K-SVD source
- LC-KSVD

~O- LC-KSVD source
~¥ DCDDL

80%

63%

Recognition accuracy

16 20 24
Number of actors used in the target training set

Figure 2: Performance comparison of the proposed DCDDL with other methods under dif-
ferent dataset partitions.
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4 Conclusion

In this paper we have presented a novel cross-domain action recognition framework. Actions
under mismatched data distributions can be unified into the same feature space through the
discriminative cross-domain dictionary learning method, so that auxiliary domain knowl-
edge can be utilized to span the intra-class diversities and improve the overall performance
of the original recognition system. Through a transformation matrix, dictionary learning is
performed on both the source domain actions and the target domain actions while no addi-
tional correspondence annotations between the two domains are required. Promising results
are achieved on a realistic dataset, to which knowledge from a relevant dataset is transferred.
The proposed framework can be easily adapted to solve other transfer learning problems and
it leads to an interesting topic for future investigation when large scale source and target
domain data are available.
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