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Figure 1: Overview of our approach to articulated 3D human pose estimation. Red
boxes specify the selected component.

Pictorial structure models are the de facto standard for 2D human pose
estimation. Numerous refinements and improvements have been proposed
such as discriminatively trained body part detectors, flexible body models
and local and global mixtures. While these techniques allow to achieve
the state-of-the-art performance for 2D pose estimation, they have not
yet been extended to enable pose estimation in 3D, instead this problem
is traditionally addressed using 3D body models and involves complex
inference in a high-dimensional space of 3D body configurations.

We formulate the articulated 3D human pose estimation problem as
a joint inference over the set of 2D projections of the pose in each of the
camera views. As a first contribution of this paper, we propose a 2D pose
estimation approach that extends the state-of-the-art 2D pictorial struc-
tures model [6] with flexible parts, color features, multi-modal pairwise
terms, and mixtures of pictorial structures. The second and main contri-
bution is to extend this 2D pose estimation model to a multi-view model
that performs joint reasoning over people poses seen from multiple view-
points. The output of this novel model is then used to recover 3D pose.

We evaluate our multi-view pictorial structures model on HumanEva-I
[8] and MPII Cooking [7] dataset. In comparison to related work for 3D
pose estimation our approach achieves similar or better results while op-
erating on single-frames only and not relying on activity specific motion
models or tracking. Notably, our approach outperforms state-of-the-art
for activities with more complex motions.
Single-view model: The pictorial structures model, originally introduced
in [2, 3], represents the human body as a configuration L = {l1, . . . , lN}
of N rigid parts and a set of pairwise part relationships E. The image
position and absolute orientation of each part is given by li = (xi,yi,θi).
We formulate the model as a conditional random field, and assume that
the probability of the part configuration L given the image evidence I
factorizes into a product of unary and pairwise terms:

p(L|I) = 1
Z

N

∏
n=1

fn(ln; I) · ∏
(i, j)∈E

fi j(li, l j), (1)

The part likelihood terms fn(ln; I) are represented with boosted part de-
tectors that rely on the encoding of the image using a densely computed
grid of shape context descriptors [1]. We concatenate these shape context
features with color features and learn a boosted part detector on top of this
combined representation. Note that augumenting shape information with
the color allows us to automatically learn the relative importance of both
features at the part detection stage. The pairwise terms fi j(li, l j) which en-
code the spatial constraints between parts are traditionally modeled with
Gaussian distribution in the transformed space of the joint between two
parts. We extend our model by introducing mixture models at the level
of these pairwise part dependencies. To that end we replace the unimodal
Gaussian with the term that maximizes over multiple modes and represent
each mode with a Gaussian. Following [4, 5] we extend our approach to
a mixture of pictorial structures models. We obtain the mixture compo-
nents by clustering the training data with k-means and learning a separate
model for each cluster. The components typically correspond to major
modes in the data, such as various viewpoints of the person with respect
to the camera. The index of the component is treated as a latent variable
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Figure 2: Example 3D pose estimation results from our approach (projected to 2D).

to be inferred at test time. We select the best component with the mini-
mal uncertainty in the marginal posterior distributions of the body parts.
In our experiments this approach worked slightly better compared to a
trained holistic classifier that distinguishes the mixture component based
on the contents of the person bounding box.
Multi-view model: To exploit the multi-view information we augument
the model with appearance and spatial correspondence constraints across
views. In order to estimate the 3D pose we proceed in two steps. In the
first step we jointly infer the 2D projections of the 3D body joints across
views exploiting multi-view constraints. In the second step, we recover
the 3D pose by triangulation of the estimated 2D projections. For simplic-
ity, we describe our multi-view model for the case of two views. For view
m, let us denote the 2D body configuration as Lm and image evidence as
Im. According to Eq. 1 the single-view factors f (L1; I1) and f (L2; I2) rep-
resenting the conditional posterior over body configurations decomposes
into a product of unary and pairwise terms that define appearance and
spatial constraints between parts independently for each view. The joint
posterior over configurations in both views is given by

p(L1,L2|I1, I2) =
1
Z

f (L1; I1) f (L2; I2)∏
n

f app
n (l1n, l

2
n; I1, I2) f cor

n (l1n, l
2
n), (2)

The multi-view appearance factor f app
n encodes the color and shape of the

body part seen from multiple viewpoints. We define the joint appearance
feature vector by concatenating the features from multiple views and train
a boosted part detector using this representation. The multi-view corre-
spondence factor f cor

n encodes the constraint that part locations in each
view should agree on the same 3D position. Given a pair of correspond-
ing part locations l1n and l2n in each view and the projections of their re-
constructed 3D point l̂1n and l̂2n, we represent multi-view correspondence
factor by f cor

n (l1n, l2n) = exp(−(‖l1n− l̂1n‖2 +‖l2n− l̂2n‖2)). When more than
two views are available we connect the corresponding 2D body parts in
all pairs of views. The posterior in Eq. 2 then includes multi-view appear-
ance and correspondence factors for each pair of connected parts in all
views as well as within-view spatial and appearance factors.

As for the single-view case, our multi-view model employs mix-
tures of pictorial structures, however, in this case the mixture components
correspond to groups of poses consistent across views because they are
learned from the projections of the same 3D poses.

[1] S. Belongie, J. Malik, and J. Puzicha. Shape context: A new descriptor for shape matching
and object recognition. In NIPS, 2000.

[2] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Pictorial structures for object recogni-
tion. IJCV, 2005.

[3] M.A. Fischler and R.A. Elschlager. The representation and matching of pictorial struc-
tures. IEEE Transactions on Computers, C-22(1):67–92, 1973.

[4] Sam Johnson and Mark Everingham. Clustered pose and nonlinear appearance models for
human pose estimation. In BMVC, 2010.

[5] Sam Johnson and Mark Everingham. Learning effective human pose estimation from
inaccurate annotation. In CVPR, 2011.

[6] Andriluka Mykhaylo, Roth Stefan, and Schiele Bernt. Discriminative appearance models
for pictorial structures. IJCV, 2011.

[7] Marcus Rohrbach, Sikandar Amin, Mykhaylo Andriluka, and Bernt Schiele. A database
for fine grained activity detection of cooking activities. In CVPR, 2012.

[8] L. Sigal, A. Balan, and M. J. Black. Humaneva: Synchronized video and motion capture
dataset and baseline algorithm for evaluation of articulated human motion. IJCV, 87(1-2),
2010.


