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Current deformable part models such as the ones introduced by Felzen-
szwalb et al. [2] let the parts deform only at a fixed predetermined scale
relative to that of the root of the models (typically at twice the resolution).
They do so because it enables them to find the optimal placement of each
part efficiently, using a fast 2D distance transform algorithm.

We demonstrate in our paper that if one settles for approximately op-
timal placements, it is possible to efficiently deform the parts across scales
as well, by reusing the original convolutions and distance transforms. Al-
lowing parts to move in 3D increases the expressivity of the models, per-
mitting them to compensate for a wider class of deformations, and might
approximate an increase in the scanning resolution.

Let H be a feature pyramid and p = (x, y, z) specify a 2D position
(x, y) in the z-th level of the pyramid. Let φ(p) denote the vector obtained
by concatenating the feature vectors in the sub-window of H centered at
p, and φd(p) be the deformation features.

A model for an object with n parts is composed of a root filter w0 and
n pairs (wi,di), where wi is the filter of the i-th part and di is a vector
specifying the deformation cost of the part placement.

An object hypothesis p0, p1, . . . , pn specifies the location of the cen-
ter of each filter in a feature pyramid. Its score is given by the score of
each filter at its respective location, minus a deformation cost that depends
on the location of each part with respect to the root position,

S(p0, . . . ,pn) = wT
0 φ(p0)+

n

∑
i=1

wT
i φ(pi)−dT

i φd(pi−p0). (1)

In our algorithm, we allow the parts to also move across scales, and extend
the usual deformation features to include the z component of the disparity
between root and parts positions,

φd(p) = (1, x, y, z, x2, y2, z2). (2)

Ideally, one would like to now find the optimal location of each part in
this way,

p?
i = argmax

p∈Z3
wT

i φ(p)−dT
i φd(p−p0(zi)) , (3)

where p0(zi) =
(
λ zi−z0 x0, λ zi−z0 y0, z0

)
are the coordinates of the root

position in the i-th part’s level zi, λ being the scaling factor between two
successive levels of the feature pyramid.

Unfortunately, p0(zi) is likely to be non-integral, and the generalized
distance transform [1] thus cannot be used directly anymore. We thus
approximate the root position at the scale of the i-th part by the closest
integer one,

p̃0(zi) = argmin
p∈Z2×{zi}

||p−p0(zi)|| . (4)

Using this approximate root position, we can now again use the general-
ized distance transform in order to find the optimal part location,

p̃?
i (p0) = argmax

p∈Z3
wT

i φ(p)−dT
i φd(p− p̃0(zi)) . (5)

We expect this location to coincide most of the time with the optimal one
for the real root position, the difference between the real and the approxi-
mate one being at most 0.5 along the x and y axes. However, the optimal
score returned by the transform will generally not match the score of any
real root and part configuration so we recompute it in constant time using
this time the real root position p0(zi),

S̃(p0) = wT
0 φ(p0)+

n

∑
i=1

wT
i φ(p̃?

i (p0))−dT
i φd(p̃?

i (p0)−p0(zi)) , (6)

in order to obtain a lower bound on the true optimal score.
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Figure 1: Lattices of part locations (in black) in a particular pyramid level.
The red circles indicate root positions. In a) the part and root positions
are at the same scale, as is always the case with standard models. In b)
there is a mismatch between the scales of the two, and we show how we
approximate a root position p0(zi) by rounding it to the closest integral
position p̃0(zi) when looking for its optimal part placement.

aero bike bird boat bottle bus car
voc-release4 (AP) 28.9 60.2 1.7 8.3 20.6 53.5 51.3
2D DPM (AP) 30.3 57.7 4.4 11.4 25.2 55.0 53.3
3D DPM (AP) 33.5 59.4 6.9 13.1 28.7 59.0 52.9
Rel. gain (%) 10.6 2.8 55.4 15.1 13.9 7.2 -0.8

cat chair cow table dog horse mbike
voc-release4 (AP) 6.9 3.3 54.5 47.6 18.7 20.1 13.8
2D DPM (AP) 11.1 5.0 59.2 48.5 19.2 22.5 24.4
3D DPM (AP) 19.5 6.5 61.2 48.9 20.6 26.8 25.9
Rel. gain (%) 75.9 29.2 3.5 0.8 7.3 19.4 6.3

person plant sheep sofa train tv mean
voc-release4 (AP) 38.8 5.8 14.3 28.1 37.3 39.0 27.6
2D (AP) 35.7 8.6 18.8 28.4 42.3 42.2 30.2
3D (AP) 32.9 11.1 21.5 31.7 44.5 43.8 32.4
Rel. gain (%) -7.7 29.5 14.3 11.6 5.3 3.9 15.2

Table 1: Pascal VOC 2007 challenge Average Precision comparison for
the models of [2] as well as our 2D and 3D models.

Brute-force Approx. DT
mean (AP) 45.0 44.9

Table 2: Comparison between an exact method as well as our approxima-
tion to the generalized distance transform.

The idea motivating our work is to make full use of all the convolutions
between pyramid levels and part filters evaluated in DPMs, reusing them
to deform parts across multiple scales. The extension we presented in-
creases on average the detection accuracy of the models by 15% for a
moderate augmentation of its total computational cost, the number of con-
volutions and distance transforms remaining constant. Despite relying on
an approximation to the generalized distance transform, our approach ob-
tains scores virtually equal to its exact but much slower counterpart.
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