
QI WU, PETER HALL: MODELLING VISUAL OBJECTS INVARIANT TO DEPICTIVE STYLE1

Modelling Visual Objects Invariant to
Depictive Style

Qi Wu
http://www.cs.bath.ac.uk/~qw219

Peter Hall
http://www.cs.bath.ac.uk/~pmh

Media Technology Research Centre
Department of Computer Science
University of Bath,
Bath, UK

Abstract

Representing visual objects is an interesting open question of relevance to many im-
portant problems in Computer Vision such as classification and location. State of the
art allows thousands of visual objects to be learned and recognised, under a wide range
of variations including lighting changes, occlusion, point of view, and different object
instances. Only a small fraction of the literature addresses the problem of variation in
depictive style (photographs, drawings, paintings etc.), yet considering photographs and
artwork on equal footing is philosophically appealing and of true practical significance.

This paper describes a model for visual object classes that is learnable and which
is able to classify over a broad range of depictive styles. The model is a graph in which
simple shapes label region nodes. We use our model to classify twenty classes in CalTech
256, each class augmented by additional images to increase the variance in style. When
compared to a Bag of Words classifier and to a structure only based classifier, our results
show a significant increase in robustness to variance in depictive style.

1 Introduction

Humans are able to recognise objects in a seemingly unlimited variety of depictions: in
photographs, in line drawings, as cuddly toys, in clouds. Computer Vision classifiers, on the
other hand, tend to be restricted to recognising objects in photographs alone. The work in
this paper is motivated by a desire to explore this gap, and its broad contribution is to take
one step towards closing it.

The fact that objects can be visualised in a wide variety of depictive styles, yet remain
recognisable, leads us to the question: what properties of an object class are invariant to
depiction? This is an important question for Computer Vision, because it directly affects
performance in applications such as image retrieval, image matching, and object classifi-
cation. With few exceptions, the models used in Computer Vision are trained and tested
on a single depictive style. Yet models learned exclusively from photographs typically do
not generalise well to other depictive styles; it can be said that such models are over-fitted.
Such models are necessarily limited in their utility to applications – it becomes difficult to
access both photographs and artwork in a library of portraits, for example. Additionally,
recognisable objects exist for which there are no photographs (e.g. the Gryphon).
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We argue that models of visual objects should not be premised, even tacitly, on photo-real
appearance or indeed on any particular depictive style at all. Rather, visual object models
should be based on quasi-invariant properties of the objects in a class. A similar argument is
made by those who advocate part-based representations for image. We go further by saying
that such models should generalise across depictive styles. This means that if a model is
constructed using images in one style, the same object should also be classifiable even when
depicted using a different style.

In this paper, we investigate a method for modelling visual objects classes in a manner
that is invariant to depictive style. The assumption we make is that an object class is char-
acterised by the qualitative shape of object parts and their structural arrangement. Hence we
use a graph of nodes and arcs in which qualitative shapes such as triangle, square, and circle
to label the nodes. More exactly our model is a hierarchy of levels, yielding a coarse-to-fine
representation. Each level contains an undirected graph of nodes and arcs. Nodes between
levels are connected via parent-child arcs, which are directed. Child nodes are nested inside
their parent.

Our technical contribution is to show that it is possible to learn models of object classes
that generalise across depictive styles, in the sense that it is possible to learn a model using
one style but classify objects depicted in other styles. The paper has two main sections:

1. Section 3 explains how to build a hierarchical graph model to represent object classes,
with nodes labelled by qualitative shape and edges labelled with displacement vectors.

2. Section 4 describes experiments on a cross-depiction image dataset. The experiments
provide empirical evidence that our model is more robust to cross-depiction object
classification than an excellent Bag of Words classifier.

We briefly review Related Work in Section 2. The paper concludes, in Section 5, with a
discussion of the limitations of our modelling scheme, and points to future developments
and applications.

2 Related Work
Of the many approaches to visual object classification, the bag of words (BoW) family is
arguably the most popular and successful. Borrowing from techniques in document analysis,
BoW methods have featured in Computer Vision since the early to mid 2000s. The classical
one for image categorization, used by this paper for comparison, is an extended version of
the method proposed first in [5]. Details aside, all in the BoW family model visual object
classes via histograms of “visual words”. Using a histogram ignores the spatial location of
the words, making BoW methods robust to changes in shape, occlusion, lighting, etc.

Although the BoW methods address many difficult issues, they tend to generalise poorly
across depictive styles. This means that models trained on photographs will tend to misclas-
sify objects in another depictive style. The explanation for this is the formation of visual
words: words are found by clustering low-level features, hence the assumption of low varia-
tion in feature appearance is built-in to such classifiers. Others have acknowledged this, and
respond by using low-level features that do not depend on photometric appearance. Some
use the shape of edgelets [7, 19], others use the shape of regions [11, 12]. We do not use edge
data, but do use region shape. However, rather than using complicated shapes for regions (as
others do), or just using (a hierarchy of) Gaussian blobs [18], we use a collection of simple
shapes (e.g. circle, square, triangle) [25]. The idea is that abstracting region shape into one
of a few classes brings greater robustness to non-salient variations. Anecdotal support for
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Figure 1: Constructing a class model, from left to right. (a): An input collection (possibly
different depictions) used for training. (b): Probability maps for each input image, and graph
models for each map. (c): The median graph model for the whole class. (d): The refined
median graph as the final class model.

this is found in the fact that many artworks comprise simple shapes, and even sophisticated
artists often paint over a skeleton comprising simple shapes.

Our model is a hierarchical graph, in which simple shapes label nodes, as in Figure 3. We
are not alone in using a parts based hierarchy to model objects and object classes. Hierarchy
of shapes or object regions are used to learn object class models (for example [6, 9, 14, 23,
28]). These build object class models, and most are motivated by a view we share: that such
models should reflect the underlying object rather than its appearance. Some emphasise the
importance of structural invariance [23, 27], as we agree this is an important property. Many
hierarchies make use of spatial data [15, 16], as we do by labelling arcs with displacement
vectors. None of the above use a median graph, as we do, to represent a visual object class.
We construct a median graph via embedding [8]. Others construct a class specific graph
prototype [26], but this is not the median graph and is labelled with SIFT features rather than
qualitative shape.

Cross-depiction problems are little studied. Their importance is high for applications
such as content based retrieval using sketches to index real video [4]. Matching static images
has been addressed using self-similarity descriptors [17], and HoG features form the basis
of a support vector machine is also capable of cross-depiction matching [20]. Neither of
these are used in classification so far as we know, and the latter is computationally expensive
– it requires thousands of images, we need just a few. Others use only structure for cross-
depiction classification [27], which is a base for us to test against in our experiments. The
method relies on spectral graph theory: it embeds a graph into a pattern space via the first
few eigenvalues of the graph’s Laplacian matrix, a fully supervised Gaussian Mixture Model
is used as a classifier.

In summary, the problem of cross-depiction classification is little studied. We use a
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(a) (b) (c)

Figure 2: (a) Relational graph model in schematic form. (b) A graph model of American
flag. (c) A graph model of teddy bear. Parent-child arcs in blue, neighbour arcs in green.

hierarchical model of visual object class with nodes labelled by qualitative shape, such a
model is unique so far as we know. We now describe the visual class model in greater detail:
how to create them, and their value to the problem of classification.

3 Learn one model for each visual object class
We learn visual class models from input images, each labelled with the object they contain.
There are three major steps: (i) build an “image graph” for each image in the training set; (ii)
compute the class model as the median graph of the image graphs, and (iii) refine the class
model by maximising classification performance over the training set. Figure 1 presents a
framework of the proposed method. The steps are now discussed in detail.

3.1 Build Image Graphs, one for each image.
Our modeller uses a state of the art segmentation algorithm from Berkeley that automat-
ically yields a hierarchical description of an input image [1]. This outputs a sequence of
segmentations indexed by thresholding over a probability map over region boundaries. The
segmentations are ordered coarse-to-fine; smaller regions are nested inside larger ones.

We build an “image graph” from this in which regions label nodes. Undirected arcs at a
given level (threshold value) denote touching neighbours. Directed arcs link a parent region
in one level to the children it contains in the next level. There can be several hundred layers,
but their number can be reduced to about ten or so, without loss of information, by a graph
based filtering process [21]. This reduced graph is our starting point. Typical examples of
reduced graph models can be seen in Figure 2.

We label graph arcs with displacement vectors between region centroids. We label nodes
using qualitative shapes from S = {circle, polygon,square, trapezium, triangle,random}.
The first five of these shapes have been shown to explain around 80% of regions in pho-
tographs up to an affine transform; random is used when a region cannot be classified. See
[25] for details on shape classification. “Polygon” captures pentagons, hexagons, etc.

More exactly, we label nodes with probability vectors over S. The shape classifier is
a mixture model over a feature space of (the absolute value of) Zernike moments. Each
mixture component is itself a Gaussian Mixture Model. For each shape class S ∈ S we
specify a GMM (NS,{αsi,µSi,CSi}N

i=1), with NS the number of GMM components, and αSi,
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(a) (b) (c)

Figure 3: (a) Primitive shape classes (other than random)[25] (b) An American flag broken
in primitive shapes. (c) A teddy bear likewise decomposed.

µSi,CSi being the prior, mean, and covariance of each. For a region x we denote the density
of the shape class by p(x|S), which is readily computed using the standard form for a GMM,

p(x|S) =
NS

∑
i=1

p(x|µSi,CSi)αSi. (1)

We label the corresponding graph node with a 6 elements vector of MAP estimate of shape-
class membership:

p(S|x) = p(x|S)p(S)
∑T∈S p(x|T )p(T )

. (2)

If an application requires a single shape, we use S∗ = argmaxS p(x|S). The shape-class prior,
p(S) is taken to be the relative number of shapes classified as shape S. All parameters used
are provided by the shape classifier after training on about 40000 regions [25]. Figure 3
illustrates the shape classes we use, and the shape classes used to label nodes at each level of
a hierarchy. This completes our construction of an image graph.

3.2 Compute an Initial Visual Class Model.

Given a set of image graphs, the next step is to compute the median graph model as the visual
class model. The median graph, introduced into structural pattern recognition by Jiang et al.
[13], is a useful concept that can be used to represent a set of graphs. A single prototype is
extracted from a collection of graphs.

Let G = {G1, ...Gn} be a set of graphs and let d(Gi,G j) be some distance function to
measure the dissimilarity between graphs Gi and G j. A simple approach to finding a median
graph is to find the graph Gk ∈G that minimises the sum of d(., .) over G. A better approach
is to choose the median graph, Ḡ from the set of all graphs that can be constructed from
all combinations of all subgraphs of all graphs G ∈ G. This vast set is denoted U, and the
median graph we use is defined using it:

Ḡ = arg min
H∈U

n

∑
Gi∈G

d(H,Gi). (3)
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Figure 4: Examples of three graph models generated from 3 categories of objects, which are
horses, bicycles, and butterflies. The visualization shows of selected levels below the cor-
responding model, with the simple shapes fitted. Child-parent arcs are in blue, adjacencies
between the nodes in the same level are green.

This is far too large a problem to solve directly. In this paper we use an approximate algo-
rithm for median graph computation proposed in [8].

For a set of image graphs generated as the section 3.1, G= {G1,G2, ...Gn}, we first com-
pute the graph edit distance (equal to the cost of a sequence of optimal edit operations, see
section 3.2.1) between every pair of graphs in G. Hence, an n× n distance matrix will be
generated. Then, each row/column of the matrix can be seen as an n-dimensional vector,
corresponding to each graph in G. This embeds graphs into an n-dimensional feature space.
Secondly, a median vector will be generated by computing the Euclidean Median of all the
data points in the feature space. Finally, we transfer this median vector to a graph represen-
tation. This transformation process involves a triangulation procedure, which can be found
in [8]. The result is our first approximation of the visual class model.

3.2.1 Graph edit distance

The graph edit distance, d(G1,G2), of two graphs is equal to the cost of an optimal ecgm
(error-tolerant graph matching) [3]. Formally, let G1 = (V1,E1) and G2 = (V2,E2) to be two
graphs, and the number of vertices of two graphs is not necessary equal. An error-correcting
graph matching (ecgm) from G1 to G2 is a bijective mapping X : v̂1→ v̂2, where v̂1 ∈V1 and
v̂2 ∈V2, so the number of vertices of two matched sub-graph |v̂1|= |v̂2|. Then,

d(G1,G2) = c(X∗) (4)

The cost function c(X∗) here is the sum of distance of the edit operations implied by X∗,
which is the optimal ecgm mapping and can be obtained in the following process. We follow
Torresani et al. [22], who proposed a graph matching method based on global optimiza-
tion. Given a pair of graphs, G1 and G2, the graph matching problem consists in finding a
correspondence between nodes of G1 and G2 that maximise the following score of global
consistency given as

E(X ;G1,G2) = ∑
i∈V1, j∈V2

xi jΦi, j + ∑
i1,i2∈V1, j1, j2∈V2

xi1 j1xi2 j2Θe1e2 , (5)
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where each X is a binary matrix that denotes the node-node correspondence and e1 =(i1, i2)∈
E1, e2 = ( j1, j2) ∈ E2. Maximising E gives an optimal edit path between two graphs, X∗.
The two similarity matrices, Φ and Θ, measure the similarity of each node and each pair of
edge respectively.

We specify Φ as the probability that two segmented regions are the same underlying
simple shape. Suppose we have region i in graph G1 and region j in G2, then p(S|i, j)
denotes the probability that both are simple shape S. We specify

Φi j := max
S∈S

p(S|i, j) = max
S∈S

p(S|i)p(S| j), (6)

which assumes that regions are iid. This makes it easy to compute Φi j via equation 2.
The similarity of a pair of edges from two graphs, Θ, is obtained by evaluating how

well the edge e1 in graph G1 matches the edge e2 in graph G2, in terms of both length and
direction. Following [22] we specify edge similarity as

Θe1e2 := η(exp(δ 2
e1e2

/σ
2
ι )−1)+(1−η)(exp(α2

e1e2
/σ

2
α)−1) (7)

in which, using p1, p2 and q1,q2 to denote region centroid of i1, i2, j1, j2:

δe1,e2 =
|||p1−q1||− ||p2−q2|||
||p1−q1||+ ||p2−q2||

and αe1,e2 = arccos
(

p1−q1

||p1−q1||
· p2−q2

||p2−q2||

)
. (8)

The parameter η is a scalar value trading off the importance of preserving distance versus
preserving directions, we set η = 0.5. Variance values σ2

ι and σ2
α could (in principle) be

learned from ground truth correspondences, but we set σ2
ι = 0.5 and σ2

α = 0.9 as the initial-
ized value given by [22].

3.3 Refine the Visual Class Model.

The median graph contains nodes and arcs that derive from visual clutter in background
of images in the training set. Hence, we developed a cleaning algorithm to remove such
elements, and so refine the visual class model (vcm).

We begin by matching the median graph back into each training image, to count the
number of times a given node in the model appears in the training data. This frequency
count indicates the relevance of a node to the visual class. Next, we delete all nodes below a
frequency threshold – we compute the matching score (using equation 5) between the edited
vcm and each image in the training set. The threshold is then incremented, and the process
repeats until the total match score is maximised. The nodes that remain define the final vcm.
Figure 4 shows some final results.

4 Experiments and Results
Our visual class model (vcm) has the potential to be used in many applications, here we use
classification – and cross-depiction classification in particular. Like any classification task,
ours consists of two main steps, training and testing. Training comprises building a vcm, as
described in Section 3. The testing process involves matching each vcm (one for each visual
class under consideration) into the image graph that corresponds to an input test image. More
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Figure 5: Some example pictures from our own dataset that augments CalTech 256.

formally, for n categories of object, we have a set of vcms with index set N= {i}n
1. Given an

input image I we have its image graph G[I], we compute

i = argmax
i∈N

E(X ;G[I],Gi) (9)

as the index number of the class to which the query image belongs. The similarity measure
function is given by equation 5; notice that it ignores clutter nodes in G[I].

To our best knowledge, there is not a published database and benchmark for this kind of
cross-style object classification task. Therefore, we have augmented the Caltech-256 Object
Category Dataset[10] with a parallel database that widens the variation in depictive style, see
Figure 5. There are 20 categories of object in our own dataset now and more classes will be
added. The dataset can be downloaded from here.

Using our expanded version of CalTech-256 we conduct experiments designed to test
how well a visual class model generalised from across depictive styles. Specifically we: (1i)
train on photographs alone and test on photographs; (1ii) train on artwork alone and test on
artwork; (2i) train on photographs alone and test on artwork; (2ii) train on artwork alone and
test on photographs; (3i) train on photo and test on both photographs and artwork; (3ii) train
on artwork and test on both photographs and artwork; (4) train on both and test on both.

For comparison with alternative visual class models we conduct the above experiment
using not just our vcm but with three others also. The first is a BoW classifier, chosen
because it performs well and will help us assess the performance of such a popular approach
to the problem of cross-depiction classification. The BoW we use is proposed in [24], it uses
PHOW features [2] (dense multi-SIFT descriptors ) and K-means for visual word dictionary
construction. Finally, it uses an internal SVM for classification. Here we set the number of
words in vocabularies at 600. And the other parameters are the same as [24] used, which
can achieve 64% performance on Clatech101 dataset. The second is a shape-based method
proposed in [7]. We first learn a shape model for each class by using the local PAS features.
Then we compare each testing image with each shape model with a scoring function provided
in [7] to decide which class it belongs to. The parameters we use are same as the paper
provided except to change dissimilarity threshold γ to 10. The third vcm alternative we
experiment with uses structure alone as a model [27] and is relevant because it explicitly sets
out to classify in a cross-depiction domain. It uses the first few eigenvalues of the Laplacian
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matrix of the object structure as the feature vector, which embeds graphs in a pattern space. A
GMM is employed as the classifier. Experimental results are shown in the following section.

4.1 Results and Discussion
Classification accuracy of different methods in various Training/Test cases, shown in table 1
(the deeper the color, the better the performance). The training and test images were selected
to show objects on uncluttered backgrounds, which is also a limitation of our current work.
The numbers of images in the table are per-class figures, the rates are averaged over 20
classes. In total our test used 800 images, including our extension to CalTech 256.

case 1: Training 5p 5a
case 1: Testing 15p 15a

Dense SIFT [24] 70% 59%
Shape Model [7] 25% 33%

Structure Only [27] 16% 19%
Proposed Method 61% 62%

case 2: Training 8p 10p 8a 10a
case2 : Testing 15a 15a 15p 15p

Dense SIFT [24] 43% 47% 49% 51%
Shape Model [7] 33% 35% 34% 34%

Structure Only [27] 19% 23% 22% 25%
Proposed Method 63% 64% 64% 67%

case 3: Training 3a 5a 3p 5p
case 3: Testing 30m 30m 30m 30m

Dense SIFT [24] 46% 50% 50% 54%
Shape Model [7] 27% 30% 24% 27%

Structure Only [27] 13% 16% 14% 16%
Proposed Method 58% 61% 56% 61%

case 4: Training 6m 10m
case 4: Testing 30m 30m

Dense SIFT [24] 60% 61%
Shape Model [7] 32% 34%

Structure Only [27] 21% 24%
Proposed Method 62% 65%

Table 1: Classification accuracy for different cases. From top to bottom, left to right: (a) sin-
gle domain task, (b) single cross depiction task, and (c) single to mixture depiction task, (d)
mixture cross depiction task. The character ’p’ is ’photos’, ’a’ is ’art’ and ’m’ is ’mixture’.
More detailed results for each single experiment can be found in supplementary material.

The table shows that our method outperforms the shape or structure only method in all
cases. Our explanation is (i) structure-only method is not sufficiently rich, and (ii) we use
more complex structures than the original [27]. We outperform BoW in all cases except case
1i, when photographs are used in both training and testing (or when the training set is very
small, see supplementary material). Our rates are considerably higher than BoW for cross-
depiction problems (cases 2 and 3). We are a little higher for mixed problems (case 4), more
so when the number of training images rises.

Our explanation is that word formation in BoW favours features that exhibit low variance;
photo-features will exhibit lower variation than art-features (thinking of all the ways to depict
an eye). Thus BoW words are in some sense over-fitted and the method is biased towards
a particular depictive style. The table (cases 2 and 3) suggests that our class model is able
to generalise to depictions which has not been trained on, and that exhibits improved perfor-
mance when the training set is mixed. When all cases are taken into account, our method is
much more stable in performance (from 58% to 67%) compared to BoW (43 % to 70%). Our
rates compare favourably to CalTech 256 benchmarks using only photographs (see http:
//www.vision.caltech.edu/Image_Datasets/Caltech256/ and http://
www.vlfeat.org/applications/apps.html.) We are taking a first step towards
widening the classification problem.

5 Conclusion
The ability to generalise to new depictive styles is important, not least because the number of
depictive styles is seemingly unbounded. No training procedure can capture them all and so a
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class model that is able to generalise to unseen depictive styles is of value. Experiments show
that our proposal method performs better than the traditional visual appearance based method
in cross-depiction problems (including to unseen depictive styles), in mixed problems, and
in art-only problems.

However, there are still some limitations of this current system, for example, the methods
fail when object is relatively small with complicated background, and the dataset is small,
especially the number of positive examples. We do not yet localise objects in images, such
an ability would improve our ability to learn. Our class exemplars exhibit a complex struc-
ture that would benefit from further simplification, e.g. using graph prototypes rather than
median graphs. Additional labelling (for example texture on nodes, and affine maps) may
also improve classification performance. We cannot model objects that exhibit high variation
in structure and/or shape, e.g. buildings as a general class, such broad classes are a challenge
to many classifiers. Our method depends on matching and so can be slow, faster algorithms
– perhaps via a hierarchy of classes – are desirable.

Classification is just one application, future work may yet see further developments in
areas such as non-photorealistic rendering as well as more traditional Computer Vision prob-
lems such as content based retrieval, and object localisation. Nonetheless, our results are a
first step towards depiction invariant modelling.
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