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Abstract

The benefit of accurate camera calibration for recovering 3D structure from images

is a well-studied topic. Recently 3D vision tools for end-user applications have become

popular among large audiences, mostly unskilled in computer vision. This motivates the

need for a flexible and user-centric camera calibration method which drastically releases

the critical requirements on the calibration target and ensures that low-quality or faulty

images provided by end users do not degrade the overall calibration and in effect the

resulting 3D model. In this paper we present and advocate an approach to camera cal-

ibration using fiducial markers, aiming at the accuracy of target calibration techniques

without the requirement for a precise calibration pattern, to ease the calibration effort

for the end-user. An extensive set of experiments with real images is presented which

demonstrates improvements in the estimation of the parameters of the camera model as

well as accuracy in the multi-view stereo reconstruction of large scale scenes. Pixel re-

projection errors and ground truth errors obtained by our method are significantly lower

compared to popular calibration routines, even though paper-printable and easy-to-use

targets are employed.

1 Introduction

Camera calibration is the computation of the parameters of a camera model, a necessary step

in extracting 3D metric information from 2D images. Accurate intrinsic camera calibration

is critical to most computer vision methods that involve image based measurements, and

often a pre-requisite for multi-view stereo (MVS) tasks [27]. Some researchers have advo-

cated the direct use of uncalibrated views for 3D reconstruction [8]. While there has been

recent progress in this, we have found that accuracy of structure from motion computation

is expected to be higher with a calibrated setup as shown in the work of Irschara et al. [16].

In particular, it considerably simplifies the problem because accurate pose is essential to ob-

tain a good reconstruction when using dense depth techniques and it helps avoid the need to

differentiate between scenes with and without dominant planar structures [24].
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Figure 1: Reconstruction of a facade shows that though visually correct in appearance, geo-

metric inconsistencies (significant bends along the fringes) are prevalent, when using calibra-

tion and undistortion results from OpenCV (middle). In comparison, using accurate camera

parameters delivered by the proposed method results in a straight wall (bottom).

Recently, 3D vision methods demonstrate increased robustness and result in high quality

models. Hence multi-view modeling appears more often in industrial projects targeted at

large-scale scenes such as Google Earth and Microsoft Bing. Combined with the emergence

and availability of affordable high resolution cameras and desktop computers, this develop-

ment has made 3D vision methods and tools popular not only among researchers, but also

lead to participation of an ever increasing population of end-users, who are not experts in

computer vision. Panorama creation tools like Autostitch [5] are already well-established in

the public. Now, even end-user applications for automatic structure from motion computa-

tion from a large set of images such as Photo Tourism [26] exist. Currently these software

tools do not explicitly incorporate calibrated cameras, but rely partially on the focal length

specification found in the image meta-data to obtain the initial metric structure. Though the

advent of sophisticated multi-view stereo systems [13] used in these tools have enabled the

creation of visually appealing models, the need for preserving high standards of geomet-

ric fidelity in image based modeling involving participation of end users has put growing

demands on the flexibility of existing calibration procedures used to estimate the camera

intrinsics.

Given its crucial role with respect to overall precision, camera calibration has been a well-

studied topic over the last two decades. However, in most of the calibration literature, a strict

requirement on the target geometry and a constraint to acquire the entire calibration pattern

has been enforced. This has recently become a matter of question as studied in [1, 20, 28].

The issue of the robust detection of correspondences has also received little attention as most

of the standard routines assume that the correspondences have already been found. The poor

quality of gathered data, owing to the user’s inexperience in calibration procedures (e.g.

failure to cover the pattern along the corners of the image) and bad illumination are often

sources of inaccuracy. It is these considerations that motivate our contribution.

In this paper, we present and advocate the use of planar paper based fiducial markers

as a target pattern to put together a flexible and reliable calibration pipeline, thereby easing

the efforts for the end user. Our contribution is three-fold: First, we establish robust cor-

respondences across multiple views with the use of simple printed markers having unique

extractable ID’s. This allows to robustly select only those inliers which have been precisely

detected as input to the remaining calibration pipeline, and to filter out the unreliable data; a

flexibility absent in the current methods. Second, we release the critical requirement to pro-

cess the entire pattern of the calibration object and thereby eliminate the need for an elaborate
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procedure for a user to get accurate calibration results. This also ensures that faulty images

do not degrade the overall calibration. Finally, we comprehensively validate the recovery of

correct calibration parameters using the proposed method with an accuracy far exceeding the

standard approach [37] and demonstrate the resulting qualitative and quantitative fidelity in

the multi-view stereo reconstruction of large scale scenes. Even though the robustness of typ-

ical multi-view reconstruction pipelines results in visually appealing models as can be seen

in Fig. 1, the geometric fidelity mainly depends on the accuracy of the camera parameters.

2 Previous Work

Camera calibration is a mathematically well-defined problem and numerous methods have

been developed to provide solutions. However, these methods make different simplifying as-

sumptions and hold strict prior requirements as to how they should be used in practice [25].

In the initial days of computer vision, photogrammetric calibration was prevalent. It required

observing a calibration object with known 3D scene structure [9]. Tsai [33, 34] introduced

two methods where the pose of the target with respect to the camera is being estimated. Even

though accurate calibration can be attained using these methods, they require either an ex-

pensive calibration apparatus or an elaborate setup. In contrast, some researchers [13, 31]

have proposed to determine camera parameters directly from multi-view stereo and bundle

adjustment. However, the joint optimization of scene structure and camera intrinsics in this

technique involves many degrees of freedom, thus a strongly connected graph of observa-

tions and 3D points is necessary. In many outdoor scenes, and especially at the border of a

reconstruction, this assumption is not valid and the results tend to be unstable or bent [28].

Planar calibration patterns on the other hand have gained widespread acceptance, due to

their ease of use. Significant contributions in this domain were presented by Zhang [37],

as well as Sturm and Maybank [29] in the late nineties. Their approach required only a

few images of a planar checkerboard pattern and consisted of an initial closed form solution

for camera parameters, followed by a non-linear refinement using the Levenberg-Marquardt

algorithm [21]. Zhang’s method is both flexible and accurate and has thus inspired standard

calibration routines as implemented in OpenCV [4] and also serves as a standard benchmark

to compare accuracy to nowadays.

A major drawback that still prevails in this method is the critical requirement to provide

precise pattern geometry as a prior. Zhang’s method, like most other existing approaches, at-

tempt to order corners in a grid to find correspondences and thus fails to address the problem

of robustness in correspondences between detected features across views. It is this small but

important detail that we review here. We propose to eliminate this requirement on a fixed

grid pattern by the use of printed fiducial targets, such that each individual control point

can be self-identified with a high degree of confidence. The advantages of eliminating this

critical requirement are manifold and will be delineated in the next section.

3 Fiducial Marker-based Calibration

Fiducial (i.e. individually identifiable) markers have become increasingly popular in recent

years and are often used for ground truth estimation and precise localization when high

accuracy is required. We advocate the use of such fiducial markers in a target pattern for

camera calibration. The various advantages of using fiducial markers are discussed below.

Accuracy in Feature Localization and Correspondence. Typical calibration methods

consist of two steps: control point localization and then solving for camera parameters. In
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(a) (b) (c)

Figure 2: Images provided by users which (a) have uneven illumination or (b) are partially

clipped serve as common failure points for calibration methods having a critical requirement

on pattern geometry. (c) On the other hand, if images are taken correctly the critical corners

of the image (highest distortion) are never covered.

an elaborate study by Sun and Cooperstock [30] on factors influencing calibration accuracy,

it has been shown that a major source of error is the prior requirement of precise localization

of control points and accurate determination of target geometry, especially when it needs to

be performed by an unexperienced user. Thus, both control point localization and camera

parameter estimation steps should be done as accurately as possible. Square control points

are a popular choice for calibrating cameras in standard routines like OpenCV [4] and Matlab

Calibration Toolbox [3]. Corners are detected using a Harris interest point detector [14]

and ordered into a grid based on their geometric proximity. Precise localization of such

control points are however very susceptible to lens distortion effects [7]. Some researchers

have proposed circular and ring control points to improve accuracy. Methods that rely on

these features [6, 17, 18] cannot handle the non-linear distortion by itself because it is not

possible to distinguish if the difference in the feature parameters comes from the distortion

or from projective effects. Detection can be unreliable and we found that many images

had to be captured to provide enough successfully detected grids for calibration. Albarelli

et al. [1] suggested a method for target geometry optimization for camera calibration with

imperfect targets. Even though their method improves the accuracy of localized points, it still

does not release the requirement of using the entire grid or address the problem of robust

correspondences. The use of ARTag markers [10] have been proposed as a more robust

method to find correspondences [11, 36]. Although detected and identified reliably, they are

not ideal for camera calibration because the corner localization is comparatively poor [2]. In

contrast, the use of our proposed fiducial markers not only provides robust correspondences

across views but also ensures precise localization by sub-pixel accurate line intersection.

Sensitivity to Partial Occlusions. Camera calibration by end-users is expected to be per-

formed in uncontrolled environments, susceptible to bad or uneven illumination. Hence, it is

difficult to anticipate accurate camera calibration results because the improper lighting con-

dition can harm the faithful extraction of the calibration points. Fig. 2(a) shows a failure case

where bad illumination can severely whitewash parts of an image and make the subsequent

control points occluded. As the OpenCV calibration routine uses a method to automatically

find control points and fit them in a grid, it is impossible to determine the uniqueness of each

control point in an image, and thus many frames in the set become unusable. In contrast,

using a fiducial marker based target allows us to process only reliably located points and

hence the users do not have to take care of the visibility of the calibration target. Addition-

ally, to satisfy the requirement of covering the entire target in standard methods (Fig. 2(b)),

users often avoid moving the calibration object near the image boundary and as a result poor

quality parameters are estimated.
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(a) (b) (c)

Figure 3: (a) Fiducial markers: Each marker encodes a unique ID. (b) A typical calibration

image (partially corrupted due to uneven illumination) arbitrarily arranged in a 4x4 grid on

the floor. (c) Reliably extracted markers with positions and ID.

Wide Angle Application. It has been observed that for wide angle lenses radial distortion

can be significant, especially along the fringes of the image. Fig. 2(c) depicts a calibration

image taken using a wide angle lens camera; the non-linear distortion is significant. Stan-

dard methods do not work very well for cameras with highly distorted lenses that account for

the non-linear effects caused by radial distortion (i.e. bent epipolar lines instead of straight

lines) [12]. The primary reason is that the target pattern is not well distributed along the

fringe of the images due to the constraint to process all the points. Also, image-based city

modeling generally requires an infinite focus (due to the usually large distances to the pic-

tured object) and a wide angle setup (in order to achieve the necessary image overlap), hence

the calibration pattern needs to be sufficiently large. In most cases, it is inconvenient or im-

possible to place a measurement target like a checkerboard pattern of sufficient size in front

of the cameras for an end-user. In contrast, in our proposed method this can easily be done

by printing the marker patterns on several sheets of paper and arranging them on the floor

(see Fig. 3). These print-outs can be laid out arbitrarily, hence the well-known calibration

method of Zhang is not applicable. The flexibility to process only a subset of points allows

the control points to be well distributed even along the fringes and alleviates the need for an

elaborate process or expensive calibration object for accurate results.

4 A User-Centric Calibration Procedure

Our calibration routine follows the basic principles of planar target based calibration [37]

and thus requires simple printed markers to be imaged in several views. The marker patterns

are printed on several sheets of paper and laid on the floor in an approximate grid pattern.

There is no strict requirement for all markers to be visible in the captured images, but for

good calibration results most markers should be well distributed in the calibration image

set. The calibration procedure determines the camera intrinsics matrix K and distortion

coefficients [15]. We assume a simplified camera model, where the aspect ratio is one (i.e.

α = αx = αy) and the skew factor sθ = 0. Note that this approximation is valid for almost

all standard consumer and industrial digital cameras.

The first step in the calibration procedure is the detection of the fiducial markers in the

images and the extraction of the unique marker ID (see Fig. 3). Ellipses are extracted via

Canny edge detection, and subsequent grouping comprises the set of putative markers. The

local image patch is rectified using ellipse parameters and further checked for the occurrence

of a valid binary coded circular pattern. The uniqueness of each extracted marker in every

image is validated robustly to eliminate any false positives in case of blurred or otherwise

low-quality images, thereby ensuring that each marker is classified with a high degree of

confidence. The centers of the extracted ellipses are only approximations of the true marker
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centers, hence we use a ten times up-sampled image of the center area to detect Hough lines

based on the Canny edge image. The second line is detected using the remaining edge image

excluding the inlier set of the first line. Thus, the resulting marker positions in the images

are detected with sub-pixel accuracy, even in oblique views. Matching feature points across

multiple views is trivial, since unique and easily extractable ID’s are available.

Since the marker images are laid out on a planar surface, corresponding feature points are

related by a homography. Hence, the first estimation of lens distortion parameters attempts

to minimize the reprojection error between extracted feature points with free homography

and lens distortion parameters [23]. More formally, if xk
i denotes the position of marker k in

the i-th image, the initial distortion estimation determines

arg min
Hi j ,θ

∑
i, j

∣

∣D̂(xk
j,θ)− D̂(Hi jx

k
i ,θ)

∣

∣

2
, (1)

where Hi j denotes the image homography from view i to j and D̂(x,θ) is the inverse distortion

function with coefficients θ . We use a radial distortion model denoted as

D̂(x,θ) =
(

x− (û0, υ̂0)
T
)

.
(

1+ k1r2 + k2r4
)

, (2)

with r =
∥

∥x− (û0, υ̂0)
T
∥

∥. The parameter vector θ = (û0, υ̂0,k1,k2) consists of the distor-

tion center (û0, υ̂0) and the coefficients k1 and k2. The center of radial distortion (û0, υ̂0)
is independent from the optical principal point, thus essentially removing the need for de-

centering distortion parameters [33]. The initial homographies are set to the gold standard

results [15] and the distortion parameters are initialized with the image center, and 0 for the

coefficients k1 and k2, respectively. The nonlinear minimization is performed with a (sparse)

Levenberg-Marquardt method [15].

After determining the initial estimate for the lens distortion, the focal length of the cam-

era is estimated from the set of homographies. Both [31] and [22] employ a non-linear mini-

mization technique for intrinsic parameters estimation and an initial estimate is required. We

follow the approach of Irschara et al. [16], which utilizes a much simpler search technique

to quickly determine the camera intrinsics. It is assumed that the principal point is close to

the image center and that the aspect ratio and skew are one and zero, respectively. Hence,

we search for a constant, but unknown focal length f determining the calibration matrix K.

If the correct intrinsic matrix K is known, the image-based homographies Hi j can be updated

to homographies between metric image planes, Ĥi j = K−1Hi jK. For a particular view i as-

sumed with canonical pose, Ĥi j can be decomposed as Ĥi j = Ri j − ti jn
T
i /di, where (Ri j, ti j)

depicts the relative pose and ni and di denote the plane normal and distance according to

the coordinate frame of view, respectively. Note, that each Ĥi j provides its own estimate of

ni = n(Ĥi j). For the true calibration matrix K, the extracted normal ni should coincide with

one common estimate of the plane normal. Hence, a low variance of the set {ni} indicates

approximately correct calibration parameters. A slight complication is induced by the fact

that decomposing Ĥi j results in two possible relative poses and plane parameters (denoted

with n+i and n -
i ). Let (n+0 ,n

-
0 ) be the most separated pair of normals from all pairs (n+i ,n

-
i ).

We use n+0 and n -
0 as the estimates for the mean of the set {ni}. Now, the score for K [16] is

∑
i, j

min
(

6 (n+i ,n
+
0 ), 6 (n

-
i ,n

+
0 ), 6 (n

+
i ,n

-
0 ), 6 (n

-
i ,n

-
0 )
)

. (3)

where 6 denotes the angle between the normal vectors. This score is evaluated for potential

choices of f , e.g. f ∈ [0.3,3] in terms of normalized pixel coordinates. Fig. 4 depicts the
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Figure 4: Distortion error function (Eq. 1) with respect to the focal length in normalized

pixel coordinates, evaluated for different cameras. Note the distinct global minimum in all

four cases. Best viewed in color.

exhaustively evaluated error function over a range of focal lengths for different cameras.

The objective function comprises many local minima, but our experiments confirm that a

robust global minimum can be found for all cameras using this method. The value of f with

the lowest score is used as initial estimate for the focal length. This procedure is both simple

and very fast, and yields accurate focal lengths. With the knowledge of the focal length,

an initial metric reconstruction based on two appropriate views (large baseline but many

correspondences) is generated. The remaining views are added by estimating their absolute

poses [19]. The final bundle adjustment [32] procedure is applied to perform a non-linear

optimization of the intrinsics ( f , u0 and υ0) and distortion parameters (θ) to optimize the

only approximately planar 3D structure and camera poses.

5 Performance Evaluation

In this section we analyze the performance of our proposed method for camera calibration.

We use a comprehensive set of off-the-shelf cameras and perform our experiments in a un-

controlled environment to simulate conditions similar to that experienced by a common user.

The OpenCV Camera Calibration toolbox is used as our primary reference as it represents

the most popular method for calibration outside of computer vision and photogrammetry.

Consistency of Calibration Results. To check for the consistency across a varied set of

views, we test our calibration routine on a randomly selected subset of 15 out of 20 acquired

images, and perform 100 such trials. The evaluation was done ensuring that they have similar

coverage and illumination conditions, and that the processing requirements for each method

are fulfilled. The results of this experiment are shown in Table 1. Since we do not have

ground truth data, the quality of every calibration is evaluated by computing the reprojection

error. Mean and standard deviation values for the reprojection error clearly show the signifi-

cant improvement in calibration accuracy using our method. The RMS error drops from 0.72

pixels to 0.23 pixels for the first camera, a reduction of 67%. More interesting however is

the fact that our method not only recovers the calibration parameters accurately but are also

highly consistent across different set of views. The σ values for the RMS error are signifi-

cantly lower than for the standard method, demonstrating the robustness of the system. Note

that the use of partial but accurately detected patterns is mainly responsible for the results

presented here. Additionally, the variance for the different parameters of the camera model
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Nikon DMC-LX3 Samsung Galaxy Ace MatrixVision Bluefox MCL200wG

(3648x2736) (1280x960) (752x480)

OpenCV Proposed OpenCV Proposed OpenCV Proposed

Mean σ Mean σ Mean σ Mean σ Mean σ Mean σ

f 2638.52 13.67 2613.29 1.12 1238.23 17.72 1244.15 2.12 505.72 31.76 441.69 2.31

u0 1830.25 6.53 1823.79 0.61 637.21 4.56 645.41 1.64 369.06 5.83 375.67 1.13

υ0 1339.67 10.21 1366.27 1.72 481.25 6.14 474.38 2.05 238.14 4.79 243.81 1.21

k1 -0.018 0.0091 -0.027 0.0007 -0.0723 0.081 -0.1555 0.007 -0.2664 0.062 -0.2943 0.003

k2 -0.0002 0.0001 -0.0017 0.0009 -0.0012 0.0005 -0.0424 0.0001 -0.0004 0.0001 -0.0761 0.0001

RMS 0.7251 0.095 0.2371 0.004 0.2987 0.063 0.1792 0.004 0.3213 0.072 0.1934 0.003

Time 189 s 143 s 17 s 38 s 4 s 32 s

Table 1: Camera calibration results for images taken by different camera types. Compared

to the traditional approach of OpenCV, the proposed fiducial marker based approach leads to

a significant improvement in calibration accuracy and stability.

(a) (b)

Figure 5: (a) Evaluation of the numerical stability of the proposed method w.r.t. the number

of images selected. (b) Calibration results show the successful recovery of camera poses

w.r.t the target pattern and a planar reconstruction of markers as expected.

obtained using OpenCV is very high and thus the final calibration is highly susceptible to

the quality of the data. In contrast, a very low variance using our method indicates that the

parameters are estimated with high degree of confidence.

Influence of Corrupted Images. A practical question asked by any user wishing to cali-

brate a camera is how many images are necessary. Even though most researchers have tried

to address this in their methods and shown that the accuracy increases for an initial set of

8-10 images and then saturates [30, 31, 38], the fidelity of the complete image set has seldom

been considered. We thus investigate the performance of the different calibration methods

on a set of images, some of which have been corrupted by adding Gaussian noise with zero

mean and σ = 1 pixel. The results are shown in Fig. 5. Since the entire grid needs to be

processed for each view in the case of OpenCV, we observe that it is possible for a set of

corrupted images to completely disturb the overall calibration results. The error increases

almost linearly with the number of bad images in the calibration set and disturbs the overall

results. In contrast our method processes only the reliably extracted information from each

view and hence is robust to corrupted images and prevents the error from propagating.

Geometric Fidelity of Reconstruction. We extend our evaluation to qualitatively assess

the benefits of increased calibration accuracy when applied to multi-view reconstruction of

large-scale scenes. We perform 3D reconstruction of a facade using state of the art meth-

ods [16, 35]. Even though the robustness of the multi-view pipeline result in visually appeal-
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Figure 6: Ground truth evaluation. (Top) The dense multi-view reconstruction of a quarry

wall showing an exemplary numbered prism target. (Bottom) The geometric error between

the GCPs and the reconstructed position with respect to the distance from the center of

reconstruction highlights the benefits of proper undistortion and calibration.

ing models as can be seen in Fig. 1, the geometric fidelity mainly depends on the accuracy of

the camera parameters. As a ground truth, we know that the reconstructed wall of the facade

should be straight. However on a detailed inspection, we can clearly see that the recon-

structed wall suffers from significant bending using results from OpenCV calibration, owing

mainly to the distortion parameters. In contrast, the freedom to widely distribute and match

control points in our calibration allows an accurate estimation of distortion parameters and

consequently reconstruction of a straight wall. Hence we can derive that accurate camera

calibration using our method prevents error propagation in reconstruction.

Accuracy Comparison to Ground Truth. In order to give a full quantitative evaluation

of the influence of our camera calibration on reconstruction accuracy we compare different

calibrations using ground truth 3D data. The dataset used for this experiment has been ac-

quired in a stone quarry using a 10 Mpx consumer camera. The recorded quarry wall with a

height of about 24 m and a length of about 100 m contains a set of prism targets, the positions

of which have been accurately localized using a total station. The targets are numbered and

can be clearly distinguished from the rock by color. We thus able to recognize and manually

label the markers in the densified point cloud. Fig. 6 (top) depicts the distribution of the

markers on the reconstructed quarry wall. We thus recover the absolute reconstruction accu-

racy for the Ground Control Points (GCP) in scene coordinates. Fig. 6 (bottom) visualizes

the absolute errors between GCPs and reconstructed positions in the model. The visualiza-

tion clearly shows that using an OpenCV calibration with inaccurate distortion parameters

the reconstruction bends, and errors at both small and large distances (MSE 18.71 cm) occur

due to the least-square alignment. In fact, the error on the boundaries is thus even larger

than it appears here (about 70 cm). In contrast, our method not only results in a lower mean

squared error of 5.87 cm which is comparable to the prism target positioning accuracy, but

also in a well distributed error along the entire reconstruction.
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6 Conclusion

In this paper we have introduced a very flexible and user-centric, but at the same time highly

effective method to calibrate a camera with a fiducial marker-based target. While even more

accurate calibration is clearly possible in a laboratory, we aim to overcome the difficulties

faced by most unexperienced users when using conventional methods that require precision

patterns. Our technique helps to establish robust correspondences, releases strict require-

ments on target geometry, and eliminate the need for an elaborate procedure and controlled

environment to obtain accurate camera calibration. We have presented results on real images

outlining the consistency in estimation of camera calibration parameters, and the robustness

to images corrupted by noise or human error. In addition, we show both qualitative and

quantitative benefits of increased camera calibration towards multi-view reconstruction of

large scale scenes. Facilitated with an easy to use GUI with user-feedback, the proposed

calibration method has been made publicly available1 so that a wide audience can benefit

from our findings.
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