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Abstract

Correspondence matching is a core problem in computer vision. Under narrow base-
line viewing conditions, this problem has been successfully addressed using SIFT-like
approaches. However, under wide baseline viewing conditions these methods often fail.
In this paper we propose a method for correspondence estimation that addresses this
challenge for aerial scenes in urban environments. Our method creates synthetic views
and leverages self-similarity cues to recover correspondences using a RANSAC-based
approach aided by self-similarity graph-based sampling. We evaluate our method on 30
challenging image pairs and demonstrate improved performance to alternative methods
in the literature.

1 Introduction

Correspondence matching is a fundamental problem in computer vision, with critical impor-
tance in structure from motion [17] and stereo disparity estimation [27]. Correspondence
estimation also plays a key role in image registration [3, 11] and pose-estimation [15].

Today, a large amount of aerial imagery is available online via mapping services such as
Google Maps [19] or Bing [10]. These images are typically tied to location and orientation
metadata. If we were to pick any pair of images from two different aerial views (see Figure
1 for an example), and perform SIFT-based [23] correspondence matching, we would find
ourselves with a large number of mismatches due to the large distortions between the im-
ages. Even when augmenting these methods with robust approaches such as RANSAC [14]
and its variants, we would still fail at finding correct correspondences since RANSAC has
difficulty calculating the correct model without a large ratio of correct matches to outliers.
These difficulties — large distortions, and low ratio of correct matches to outliers — together
render traditional methods ineffective. This problem has been called “Ultra-wide” baseline
correspondence matching because the distance and angle from which these two images were
taken is extremely large and cannot be explained by small translations or rotations [30].

In this paper, we consider the problem of correspondence matching for aerial imagery
in urban environments. Our approach builds on multiple ideas in the literature. Namely, A-
SIFT [34], patch-based methods [29], Generalized RANSAC framework [35], self-similarity
[18, 28], graph-based image matching [20], and geometric-invariance [24]. The main idea
behind this work is to combine view-synthesis with multiple point correspondences under a
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Figure 1: Two pairs of aerial images with correspondences are shown. Notice the large
affine transforms and repeated structure exhibited in the two, as well as the varying lighting
conditions.

RANSAC-based scheme. Robust model estimation is supported by self-similarity principles
and graph-based modeling that drives the sampling process in a restricted manner that allows
the correct model to be extracted. Each of these ideas was chosen to deal with specific
problems that cause failures in the earlier approaches as we will now briefly describe.

Synthesis vs. Normalization: As described in [34], features usually employ two tech-
niques to achieve certain invariance properties. Those two techniques are synthesis and
normalization. In the first case, different possibilities are synthesized to make up for certain
changes. For example, in A-SIFT [34] and in [21], different affine transformations were
synthesized to capture appearance changes. However, when normalization is used, the cal-
culated feature is projected to some nominal standard, which can be difficult to produce,
such that different instances could be projected to that same standard. We believe the ultra-
wide baseline nature in aerial images calls for view-synthesis, and hence, we follow in the
footsteps of A-SIFT and adopt affine synthesis.

Patches: In feature-based approaches, a detector is implemented to find points or regions
that are salient. A descriptor is then built by using a support region around given keypoints.
In the case of aerial imagery, the images exhibit similar scale that allows us to disregard scale
changes to a certain degree. Therefore, a fixed-size patch is likely to yield good results under
this assumption, especially when augmented with affine transforms that include small scale
changes.

Multiple-Correspondence RANSAC: In the Generalized RANSAC framework of [35],
multiple point correspondences are allowed by having points that satisfy a distance threshold
as viable candidate matches, as opposed to match uniqueness criteria as with the SIFT [23].
By allowing multiple correspondences we overcome the case of repeated structure, however,
it gives rise to ambiguities that need to be resolved. When we incorporate view-synthesis
to the system, a combinatorial explosion of possibilities arise. This requires more guided
sampling for RANSAC.

Self-similarity and graph-based representation: In [18], textures comprising repeated
elements were detected by correlating regions around different keypoints with each other. In
a similar sense, repeated structure also arises in buildings’ facades. This signals the need
of a method to disambiguate our possible matches. We see a number of graph-based ap-
proaches [4, 20] used in image correspondence matching. We connect these two ideas by
creating a graph of self-similar patches in our images which we use to drive the Multiple-
Correspondence RANSAC sampling process.
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1.1 Dataset

We collected 30 aerial image pairs showing buildings from different aerial vantage points
from Google Maps [19]. As far as we know, there are no previous datasets dedicated for
ultra-wide baseline aerial imagery. The examples were hand picked to be representative for
most aerial scenes of urban environments, and such that buildings exhibit a dominant plane.

2 Related Work

2.1 Correspondence Matching

Scale-invariant Feature Transform (SIFT) [23] presented a large step in feature based match-
ing. A large body of work has appeared since then, including many other feature descriptors
such as SURF [2], BRISK [22], and FREAK [25]. These feature descriptors usually perform
badly under extreme viewpoint changes, leading to failure even when applied in a RANSAC
framework.

A-SIFT [34], integrates affine-invariance to SIFT by synthesizing affine views of the
two scenes under consideration. The different synthesized images are then passed through
the standard SIFT keypoint detection and description process. While this approach sounds
applicable to our problem, the huge number of matches and the ambiguous repeating struc-
tures defeat the approach. In A-SIFT, the affine transformations applied to the images are
discarded after extracting descriptors. This leads to a heavy dependence on the matching
and robust estimation approach, because random sampling cannot be prevented from mixing
different affine transformations in a local region.

D-Nets [33] take a different approach in finding correspondences. Their method gen-
erates lines between keypoints or grid points and calculates descriptors for each line. The
line segments from the two images are matched through a hashing and voting scheme. Their
method delivers both good performance and accuracy. Their departure from conventional
patch-based approaches offers good insight into correspondence matching and therefore we
compare our approach to D-Nets.

2.2 Ultra-wide Baseline Matching

There have been several works in wide baseline stereo matching [26, 31]. However, in those
cases the distortions exhibited in the pair of images are not very large. For the case of “Ultra-
wide” baseline matching, several works have been presented.

The “scale-selective self-similarity” S* descriptor was presented by Bansal et al. [1]
which they used in performing geolocalization of street view images through facade match-
ing against labeled bird’s-eye view aerial images. In their case, the aerial images were labeled
by marking the existing building facades for rectification purposes.

Chung et al. [9] present a method for building recognition by employing semantically
rich sketch representations that are matched with a spectral graph matching procedure. Their
method uses MSERSs [13] to detect affine-regions that are then used to find repeating struc-
ture, which in turn are used to create a sketch representation. One interesting aspect of their
work is their use of geometrical invariants based on node relationships. Our method shares
the spirit of this approach, as we will describe shortly.

In [36], Zhang et al. present a visual phrases approach to image retrieval. It is supported
by imposing geometric constraints over the different visual words in a given scene. The
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Figure 2: An overview of the matching pipeline is shown here. The details of the approach
are discussed in Section 3.

geometry preserving notions they present highlights the importance of respecting geometry
between keypoints occurring together spatially.

2.3 Robust Estimation

Correspondence matching is often supported by robust estimation approaches such as RANSAC
[14] to extract the correct model representing the underlying geometry. Many variants of
RANSAC exist to solve different problems, such as the existence of multiple models (Multi-
RANSAC [37], Sequential-RANSAC [32]) as in multiple facets of a building. In these vari-
ants, the notions of multiple point correspondences is not considered. Other variants such as
PROSAC [8] perform guided sampling to increase robustness to outliers.

The Generalized RANSAC framework [35], incorporates the notion of many-to-many
matching in RANSAC as an effort to overcome repeated structure or self-similarity prob-
lems. However, it still based on random sampling which does not respect spatial structure.
This leads to many draws that give rise to incorrect models.

In the literature, there are other approaches to perform matching under the many-to-many
paradigm. Namely, spectral methods such as [6] and optimization based methods such as [7],
however, space limitations do not permit their discussion.

3 Approach

3.1 Feature Extraction and Description

For keypoint detection, we employed the standard Harris corner detection procedure [16]
after smoothing the image with a Gaussian kernel. Our goal was to obtain the corner points
covering most of the features on building facets.

We describe our keypoints by placing a window of size p X p around each keypoint
making a square patch, and then we compute the Histogram of Oriented Gradients (HOG)
[12]. Our use of HOG was due to its power of capturing the gradient structure and its
wide success in the object recognition literature. Figure 3(a) shows an example of detected
keypoints and sample patches.
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Figure 3: In (a), detected keypomts are shown along a subset of the patches representing
them. We can see that the extracted keypoints represent good corners that are likely to be
encountered in another view of the building. In (b), a sample of affine transformed patches
corresponding to the keypoint shown on the right. A correctly matching patch is highlighted
with a green borderline.

3.2 Affine Synthesis

The aerial imagery under consideration seems to obey the affine camera model to some ex-
tent, as the camera is very distant from the imaged objects, and the field-of-view is small.
This leads us assume affine local regions, and therefore following in the spirit of A-SIFT
[34], we synthesize affine transformations. However in A-SIFT, the transformations are
applied to both input pairs, and follows a different sampling procedure. We apply our trans-
formations to one of the input pairs only, and as follows:

‘ R
, .—a/-lllﬂ

S 0 0 1 She O cos(0) —sin(6) O
Scale=|0 Sy, 0| Shear= |Shy, 1 0| Rotation= |sin(6) cos(6) 0| (1)
0 0 1 0 0 1 0 0 1

vSx,y € [Sbegin : Sstep : Send]av*th,y € [Shbegin : Shstep : Shend]ave € [estart : Gstep : Gend] (2)

A = Scale x Shear x Rotation, Is, s, She.sh,0 =AXI 3)

where [ is an image.

The transformations applied belong to a subset of the affine transformations group. The
different variable ranges for, e.g. S, are chosen to cover a wide variety of affine transfor-
mations that should capture the expected distortions in the aerial imagery. Figure 3(b) shows
instances of affine transformed patches, and a corresponding patch from the target image.

3.3 Self-Similarity Graph

Buildings, in general, exhibit features that are similar to one another which is due to architec-
tural designs with repeating patterns of windows, balconies, railings, etc. This is leveraged
by forming a graph over similar patches in one of the input images. Note that we only con-
sider one image from the input pair for the self-similarity information and not both. The
reason will become clear during the matching stage.

We begin our self-similarity computation by calculating the distance matrix D for all
pairs of patches by comparing their HOG descriptors using the /; norm, i.e.:

Djj = ||hi —hjl|2 4)
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(2) (b)
Figure 4: In (a), we illustrate the angular binning around a given vertex v, and show how we
assign the vertex u as the appropriate neighbor, as opposed to choosing the vertex w. The
choice is made based on geometrical distance. In (b), two examples of the largest connected
component in its simplified form using 9 angular bins.

=

Figure 5: An instance of a transformed input image, and the sampled minimum set. Al-
though the correspondences shown are incorrect in this instance, the spatial configuration is
respected, which is the goal behind using the self-similar graph sampling strategy.

where h; is the HOG descriptor of the patch i. Afterwards, we proceed by constructing a
graph G(V,E) with the adjacency matrix M, such that:
1 iftD;; <71,i#]j
M;; = Y 7 (5)
0 otherwise
where 7 is a distance threshold. Using the adjacency matrix M, we find all connected
components C;(V',E’) such that:

Vv,u € V' <= a path exists between v and u (6)

After finding all connected components within G, we select the connected component
with the largest cardinality of vertices after passing a non-collinearity test. Then, we simplify
it by introducing geometric relations. First, around each vertex, we divide the space into k
angular bins. A vertex v € V' is allowed to have up to k neighbors, such that an angular bin
can only have a single neighbor u. We select u as the geometrically closest neighbor to v
falling into that angular bin. An example of this step is illustrated in Figure 4(a).

The result of this step is a connected component that describes the structure of self-
similar patches. A sample of a simplified self-similar structure is shown in Figure 4(b).

3.4 Matching and Robust Model Estimation

When proceeding to the matching stage, approaches like A-SIFT [34] discard the affine
transformations they used. We believe that if two patches match as caused by affine trans-
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Algorithm 1 Affine Synthesis
Require: Affine Transforms A*, Connected Component C*, Patch Set P;, Patch Set P
AllModels + ¢
for A€ A* do
P| «+ ApplyAf fine(A, Py)
C <+ ApplyAf fine(A,C*)
Dij — ||h2 — thg,Vpi S Pl/,pj ep
S {(Z,]) : D77 < 7'2}
NewModel <+ RANSAC(S,C, P{, Py,nlter) // Execute RANSAC Algorithm 2
AllModels < AllModels U NewM odel
end for
return BestSet:= maz ajnrodels |BestSet|

forming one of them, then this affine transform gives us hints about the underlying local
geometry that could lead to such matching. Therefore, we explicitly incorporate our affine
transformations as part of our RANSAC-based robust estimation method.

Let us call our input images /; and I. We begin by calculating keypoints on both of I;
and , and the self-similarity graph obtaining the connected component C* from ;. Let P,
be the set of patches defined by the vertices of C*, and let P, be all patches from I,. We
proceed with Algorithm 1, which applies all affine transformations under consideration to
the input data. When an affine transform A is applied, we calculate our matches, and transfer
control to Algorithm 2, which is a Multiple-Correspondence RANSAC that samples the data
according to the transformed connected component C.

In its essence, the algorithm samples points in the input pair that respect a certain spatial
configuration. That configuration ensures that points sampled in the transformed /;, and in
the target I, will have the same geometric relationship. This enforcement is achieved by
maintaining the angular binning relationships of the pairs of points in the current sample. As
a result, this decreases the number of random samples to be taken as opposed to randomly
picking correspondences. An example of a sample following geometric constraints is shown
in Figure 5.

Currently a single homography is estimated, which is clearly a hurdling limitation. How-
ever, for an initial test of our approach we believe this is sufficient as we aim to capture the
dominant plane in the scene. A final note on our implementation, the best homography guess
is passed through a final RANSAC round seeded with the best homography. If RANSAC
produced a larger consensus set, we choose the new model, otherwise, we keep the older
one. This seemed to increase the robustness of the estimation.

The algorithm performs O(nlter - |A*|) RANSAC runs, and in each run, it performs
O(nm + |C*||S| + n) operations where nm account for matching n points from /; with m
points in I, and |C*||S| account for worst case neighbor matching, and finally n for model
evaluation.

4 Experiments

4.1 Implementation Details

In our implementation, we used a patch size of 50 x 50. Each cell in the HOG descriptor cov-
ered 5 x 5 pixels. The number of iterations nlter is set to 5000. The affine transforms ranges
were chosen reasonably to cover possible transformations occurring in the aerial imagery.
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Algorithm 1 RANSAC with Graph Sampling
Require: Match Set S, Connected Component C*, function NEIGHBORMATCH(v, V., Q)
Point Set Py, Point Set P, /* The goal of neighbor match is to find
RANSAC Iteration Count nilter correspondences that exhibit the same spatial
layout by looking at matching angle bins*/
BestModel + ¢, BestSet +— ¢ loop // over neighbors of v
for irer < niter do Pick 1 € C*, such that (v,u) € C*
Pick v € C* randomly Pick u' € P», such that (u,u') € §
Pick ' € Py, such that (v,V') € § if angleBin(v,u) = angleBin(v' ) then
MinSample < NeighborMatch(v, v/, [vV']) if |Q| < minCount then
Homaography «— HomographyDLT (MinSample) return NeighborMatch(u.u', QU [ u'])
ConSet + EvaluateModel(Homography, P, P») else
if |ConSet| > |BestSet| then return QU [u 1]
BestModel + Homography end if
BestSet + ConSet end if
end if end loop
return (BestModel, BestSet ) return FAILURE
end for end function

HomographyDLT(): is the Direct Linear Transform algorithm for estimating homographies.
EvaluateModel(): calculates the re-projection error of the identified matches.

minCount: minimum sample size required, for homographies it is 4.

angleBin(v,u): looks up the angle bin relating these two verticies.

(b)

Figure 6: An example pair is matched using our method, and the recovered homography is
used to stitch the two images together.

Certain assumptions were made when choosing these values, e.g. we cannot have a 90 de-
gree rotation present in the aerial imagery. We ran our implementation in two configurations,
to measure its sensitivity to parameter change. Their details are as follows:

In the first configuration we set 7| = 6, T, = 7. The scale factors were chosen as S, €
[0.5,2]. The shear factors were chosen as Shy, € [—1.5,1.5]. The rotation angles were
between 6 € [, T]. The blur kernel was 3 x 3, with 6 = 0.4. The Harris detector, had a
window size of 7 x 7, and a threshold of 0.001.

In the second configuration we set 7| = 6.5, 7o = 7. The scale factors were chosen as
Syy = 1. The shear factors were chosen as Sh,, € [—1.75,1.75]. The rotation angles were
between 6 € [—{5, {5]. The blur kernel was 3 x 3, with ¢ = 1.5. The Harris detector, had a
window size of 7 x 7, and a threshold of 0.01.
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Method Correct Shifted Different | Failure | Success
Homography | Homography Plane Rate
Our Approach-1 3 5 1 21 30%
Our Approach-2 5 4 1 20 33%
A-SIFT 1 0 5 24 20%
D-Nets 4 3 2 21 30%

Table 1: Results of finding homographies using two configurations of Our Approach, A-
SIFT, and D-Nets.

4.2 Experimental Setup and Results

To evaluate our approach, we input each pair of the aerial images to: (1) Our approach, (2)
A-SIFT, and (3) D-Nets. For A-SIFT [34], we used the implementation provided on their
website with a slight modification to estimate a homography using OpenCV [5] instead of a
fundamental matrix. We believe that A-SIFT encapsulates SIFT by definition, and therefore
we do not compare with the standard SIFT. For D-Nets [33], we use the implementation pro-
vided on their website in a straight forward manner employing the FAST keypoint detector.

We measure whether each of these methods find the correct homography, or finds a
shifted version of the correct one, or finds a correct but different plane, or completely fails.
The results are shown in Table 1. A correct homography is tested against a human labeled
homography, and is considered correct if the number of correct matches exceed 75%. Shifted
versions and other planes are judged empirically using visualizations. Figure 6(a) shows the
result of our matching algorithm on two pairs, and a visualization of the recovered homog-
raphy by stitching the two images.

Between the two runs, there were 7 unique correct homographies. We see that our method
finds a lot of shifted homographies, especially in the cases with numerous repeated struc-
tures. In these cases, the typical cause is not finding corresponding keypoints due to the
Harris threshold, or too few iterations.

Relative to D-Nets, the results are highly comparable. The issue becomes computational
cost vs. memory cost. Our method is computationally intensive. On the other hand, D-Nets
requires a lot of memory; they recommend about 32GB of RAM. Our Matlab implementation
occupies about 0.8 GB of RAM when running, which can be greatly reduced under a different
language implementation. The machine we used had a 3.4 GHz Intel Core i7 processor with
12 GB of RAM.

The failure cases we exhibit are mainly due to two main issues: (1) a self-similar con-
nected component is not found, or poorly constructed with collinearity issues. (2) keypoints
are not detected properly due to image blur. Therefore factors such as the size of the em-
ployed Gaussian blur, the Harris threshold, or HOG distance threshold have a great impact
on the performance. We believe performance can be greatly enhanced by tweaking the con-
nected component discovery by introducing similarity-transitivity resulting in strongly con-
nected components that suffer less collinearity issues, which improves the sampling.

5 Conclusions and Future Work

In conclusion, our proposed approach provides a step forward in the challenging real world
problem of ultra-wide baseline image matching for urban environments. Through our use

1Visual examples of all pairs are shown in the supplementary material.
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of affine synthesis along with the self-similarity graph, we greatly reduce the number of
RANSAC iterations needed to find a solution. In our future work, we will pursue the follow-
ing improvements: (1) reducing the number of affine transformations needed, (2) improving
the graph operations, (3) improving the angular binning approach by including distance bins,
and (4) including the support of multiple planes.
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