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Figure 1: A pair of aerial images with correspondences is shown.

Correspondence matching is a fundamental problem in computer vision,
having many uses in structure from motion, stereo vision, image registra-
tion, pose-estimation, and others. Today, a large amount of aerial imagery
is available online via mapping services such as Google Maps. If we were
to pick any pair of images from two different aerial views (see Figure 1
for an example), and perform SIFT-based [3] correspondence matching,
we would find ourselves with a large number of mismatches due to the
large distortions between the images. Even when augmenting these meth-
ods with typical robust approaches such as RANSAC [1] and its variants,
we would still fail at finding correct correspondences since RANSAC has
difficulty calculating the correct model without a large ratio of correct
matches to outliers. These difficulties – large distortions, and low ratio of
correct matches to outliers – together render traditional methods ineffec-
tive.

In this paper, we consider the problem of correspondence match-
ing for aerial imagery in urban environments. Our approach builds on
multiple ideas in the literature. Namely, A-SIFT [7], patch-based meth-
ods [6], Generalized RANSAC framework [8], self-similarity [5], graph-
based image matching [2], and geometric-invariance [4]. The main idea
behind this work is to combine view-synthesis with multiple point corre-
spondences under a RANSAC-based scheme. Robust model estimation
is supported by self-similarity principles and graph-based modeling that
drives the sampling process in a restricted manner that allows the correct
model to be extracted. Each of these ideas was chosen to deal with spe-
cific problems that cause failures in the earlier approaches as we will now
briefly describe.

An overview of our pipeline is shown in Figure 2. We begin by ex-
tracting square patches around detected Harris corners, which we then
describe using the Histogram of Oriented Gradients. Our model assumes
affine distortions, which leads us to synthesizing transformations to ac-
count for probable changes between the two images. We apply our trans-
formations to one of the input pairs only, as follows:

Scale =

Sx 0 0
0 Sy 0
0 0 1

Shear =

 1 Shx 0
Shy 1 0
0 0 1



Rotation =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



A = Scale×Shear×Rotation, ISx,Sy,Shx,Shy,θ = A× I

where I is an image.
Buildings, in general, exhibit a lot of repeating patterns by design

which in turn leads typical methods to fail. We leverage the repeating
patterns by forming a graph over self-similar patches in one of the input
images. Similar patches are found by comparing their HOG descriptors.
The graph is then simplified by forcing each vertex to have a single neigh-
bor in each radial bin around it. This then yields a connected component
essential for our matching step.
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Figure 2: An overview of the matching pipeline is shown here.

Figure 3: An example pair is matched using our method, and the recov-
ered homography is used to stitch the two images together.

During matching, patches are affine transformed and then allowed
to match in a many-to-many fashion. Afterwards, our guided RANSAC
approach uses the above connected component to enforce a spatial ar-
rangement of the matches. This takes advantage of the fact that a given
affine transform that yielded matches reveals more about an underlying
transformation that allowed the matches to be made. We attempt to dis-
cover this by forcing spatial relationships as opposed to random sampling
of probable matches, thereby increasing the probability of finding correct
correspondences. A sample result is shown in Figure 3.

The main hurdles to the approach are its high computational com-
plexity and the lack of support to multiple homographies. In our future
work, we will pursue the following improvements: (1) reducing the num-
ber of affine transformations needed, (2) improving the graph operations,
(3) improving the angular binning approach by including distance bins,
and (4) including the support of multiple planes.
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