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Unsupervised learning of feature projections to low-dimensional linear
subspaces from training data has become a standard paradigm in the areas
of pattern recognition and computer vision. Principle component analy-
sis (PCA) [2] in particular is one of the most popular projection learning
methods for dimensionality reduction and feature extraction. Represen-
tations learned with PCA have proven useful for tasks such as face and
object recognition, tracking, detection, and background modeling.

Compared with the descriptive features learned from the raw intensity
domain, many advanced features work better either for machine percep-
tion (pattern recognition accuracy), or human perception (physical inter-
pretability), or both. In those cases, the standard PCA is not tuned to
any domain-specific features, thus the discriminative features for certain
perception systems may be lost in the projection process.

In this work, we propose a perception preserving projection (PPP)
method that is able to preserve the desired feature characteristic for pro-
jected images. PPP pursues a set of suitable projection basis which mini-
mize the reconstruction loss for both the original images and the extracted
features simultaneously. To quantitatively evaluate the machine percep-
tion preserving capability of PPP, we experimentally evaluate the perfor-
mance of face recognition on the reconstructed face images from both
PCA and PPP. It is shown that on the face images reconstructed by PPP,
face recognition can achieve significantly improved performance, even in
much lower dimensions compared to PCA.

The objective function of PPP can then be formulated as:

min
UT U=Ir

L(U) = ∥P ′(X)−P ′(UUT X)∥2
F , (1)

There are various feature extractors can be seen as linear operators P
over the data vector x ∈ Rd . For example, the convolution of data with
linear filter, pixel-wise “masking”, and the sum of filters. Here P′ = [(1−
α)P,αId ], and α is a trade-off parameter between the original data space
and feature space. The above objective function states that we aim to
find a set of projection basis U ∈ Rd×r, such that the extracted features
from the reconstructed data P(UUT X) will not deviate from the features
extracted from the original data P(X) too much.

The most straightforward method to solve the problem (1) is perform-
ing gradient descent on the Stiefel manifold defined by UTU = I. Though
state-of-the-art algorithms can be directly exploited, the computational
cost is quite high.

Inspired by the Robust PCA work [1], which seeks a low rank matrix
to approximate the original data matrix, here we also relax the orthogonal
constraint in the objective function and just seek a low rank matrix as the
transformation matrix.

Therefore, the objective function in (1) can be relaxed as follows:

min
W

∥P(X)−P(WX)∥2
F , s.t. rank(W )≤ r, (2)

The above objective function can be further relaxed as:

min
W

∥W∥∗+λ∥E∥2
F , s.t. P(X)−P(WX) = E, (3)

where E explicitly accommodates the reconstruction errors.
The optimization problem in (3) can be solved by the Alternating Di-

rection Method (ADM) [3] efficiently. One of the advantages of ADM
is that the original optimization problem can be decomposed into several
subproblems which are relatively easier to solve. However, it is difficult
to solve the sub-problem for optimizing the function w.r.t. W . Direct-
ly minimizing the subproblem above will lead to solving a discrete-time
Sylvester equation in each iteration, which is infeasible for the ADM al-
gorithm and makes the low-rank relaxation rewardless.
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(a) Gabor + kNN
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(b) Gabor + LDA
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(c) LoG + kNN
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(d) LoG + LDA

Figure 1: The performance comparison for reconstructed face recognition
from (a) PCA and (b) PPP on FRGC dataset based on Gabor/LoG feature.

To alleviate such difficulty, we adopt the recently developed Lin-
earized Alternating Direction Method (LADM) [4] and linearize the quadrat-
ic term in the above Lagrangian function at the point W k:
L(W,Wk) = ∥W∥∗+ ⟨Y,−P(WkX)⟩+µ

⟨
P∗

(
P(X)−P(W kX)−E

)
XT ,W −Wk

⟩
+

µη
2

∥W −Wk∥2
F .

(4)Here η > (∥P∥∥X∥)2 is the Lipschitz constant of the linear operators
imposed on variable W . After several algebra computation, the above
objective function can be written as:

L(W,Y,Wk) = ∥W∥∗+
µη
2

∥W −Mk∥2
F , (5)

where Mk = Wk −P∗ (P(X)−P(WkX)−E)XT /η +P∗Y XT /µη . P∗

denotes the adjoint of the operator P , which is defined as ⟨P(X),Y ⟩ =
⟨X ,P∗(Y )⟩. It is well known that the above objective function has fol-
lowing closed form solution:

Wk+1 =US 1
µη
(Σ)V T , (6)

where U,Σ,V are from SVD on the matrix Mk. And S(·) is a shrinkage
operator defined as Sε [x] = sgn(x)max(|x|−ε,0). Here the shrinkage op-
erator is performed element-wisely for the involved matrix. To guarantee
a good convergence rate, we adopt following adaptive penalty strategy [4]:

µk+1 =

{
ρ0µk, if µk max(

√ηεW ,εE)/∥P(X)∥< ε2,

µk, otherwise.
(7)

Here εW = ∥Wk+1 −Wk∥ and εE = ∥Ek+1 −Ek∥. And the stopping crite-
rion is:

∥P(X)−P(W kX)−E∥/∥P(X)∥< ε1. (8)
In our implementation, we also adopt partial SVD and rank prediction

techniques using PROPACK and represent W as its skinny SVD to avoid
full matrix multiplications and thus yielding a complexity of O(nd2).
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