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Abstract
In this paper, we propose a framework that can be used for detecting relevant changes

in highly dynamic scenes, where the background has several changing elements. To
establish a clear distinction between what is relevant and what is not is a very challenging
task. Therefore, we first categorize the changes into two main classes called ordinary
changes and relevant changes. Detected changes are considered as irrelevant if they
are recurrent elements and changes pertaining on the dynamic background of the scene.
The proposed framework makes use of a set of orthogonal linear transforms to capture
spatiotemporal signatures of local ordinary change patterns and subsequently employ
them in the detection of relevant changes. The use of this framework is demonstrated in
a variety of videos with highly dynamic backgrounds including lakes, pools, and roads.
Compared to existing methods reported on the same test videos, the proposed framework
detects the relevant changes more accurately.

1 Introduction
Given a set of the same type of data, the detection of changes between two samples in the
set is a problem of interest in variety of applications such as machine monitoring [25], med-
ical diagnosis and treatment [34], video surveillance [10], and remote sensing [32]. The
definition of what should be considered as change is usually domain specific. Furthermore,
when there is more than one type of change, the change detection problem becomes cumber-
some. In this paper, our focus is on finding regions of relevant change in videos acquired in
dynamic outdoor environments, where there are many changing elements (e.g., shimmering
water or blowing trees) in the foreground and background that may cause false alarms.

A wide variety of algorithms such as significance testing, predictive models, and back-
ground modeling have been proposed for image change detection [28]. Several algorithms
have been dedicated to background modeling for identifying foreground objects [23]. The
most common approach is to build a model for illumination changes and minor variations
using Gaussian mixture models [15]. These methods are usually built on pixel-based struc-
tures and work well in detecting changes that can be modeled as independent events. How-
ever, they are unable to model complicated change patterns that may be related in space
and/or time. We propose a change detection algorithm based on significance testing us-
ing spatiotemporal features. Our method shares foundations with video compression tech-
niques [2, 22]. These methods employ only a single model for the entire image due to the
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Figure 1: Our algorithm consists of three main blocks. First, given a video containing only
ordinary changes, we are interested in finding representations where the spatiotemporal fea-
tures of the ordinary changes can be captured. Then, we use the training examples to extract
spatiotemporal signatures of the ordinary change patterns. Finally, we estimate the existence
of the relevant change in given test input by interpolating from the training samples.

constraints imposed by the quantization and coding steps. Another related approach is to
detect changes by analyzing the video directly in the compressed domain [8, 35]. How-
ever, these methods operate on previously quantized transformed values depending on the
transformation methods. Its accuracy depends on the specific parameters of the compres-
sion settings. A common drawback of previous methods is the fact that the reported results
are usually obtained on a few self-acquired videos, where the backgrounds have limited al-
terations [13, 18, 21]. Change detection in the presence of highly dynamic background
elements is still a challenging problem, and no current methods have shown to be effective.

In this paper, we propose a framework (Fig. 1) that can be used for detecting relevant
changes in videos with highly dynamic scenes, where the background has several altering
elements. In such scenarios, there are almost always changes in the scene. To establish a
clear distinction between what is relevant change and what is not, we first categorize the
change into two main classes; namely, ordinary change and relevant change. Changes are
considered as irrelevant if they are recurrent elements and changes pertaining to the dynamic
background of the scene. On the other hand, an alteration that does not conform to the ex-
pected pattern of ordinary change is defined as the relevant change. We need to distinguish
ordinary changes from relevant changes in order to avoid false alarms. Pixels, which belong
to regions of the ordinary change, are typically correlated in space and/or time among a set
of consecutive frames. This correlation stems from the repetitive nature of ordinary change
patterns and induces spatiotemporal signatures [31, 33], which are specific to the ordinary
change patterns. We propose that one can make use of the spatiotemporal signatures to dis-
criminate ordinary changes from relevant changes. The image pixel space is usually not
considered suitable for capturing spatiotemporal features. Instead, if we can transform a set
of frames containing ordinary changes to another representation space where the pixels are
decorrelated, we can capture spatiotemporal signatures. This will allow us to learn within
the framework to recognize ordinary change patterns. Then, when a change unrelated to
ordinary change patterns occurs, the framework can label it as a relevant change. Due to the
amount of the data in video processing, a chosen transform should be fast and simple to im-
plement such as linear transforms [29]. Orthogonal linear transforms redistribute the energy
stored in the input data, decorrelate it, and provide compact representations [5]. Accord-
ingly, we propose to use orthogonal linear transforms to exploit spatiotemporal signatures
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of local ordinary change patterns. Prediction of the optimal orthogonal linear transforms for
different ordinary changes patterns is not a trivial process. In terms of energy compaction,
Karhunen-Lo’eve transform (KLT) has the best efficiency; however, KLT has high compu-
tational complexity [29]. Instead, we propose to estimate a suitable transform for a local
ordinary change pattern from a collection of linear transformations having complementary
orthogonal basis vectors. Our approach is built up on a data decomposition model gener-
ating local three dimensional blocks. Therefore, the estimated change mask may suggest if
there is a relevant change within the block, but we need to examine each frame region in
the block to obtain individual pixels belonging to the regions of change in each frame. This
may cause blocking artifacts. In order to compensate for these artifacts, we apply Markov
random field regularization [17]. To evaluate the performance of the proposed method, ex-
periments are performed using the test videos with highly dynamic backgrounds provided
by ChangeDetection.net [9]. The quantitative comparison of the detection results from the
proposed framework to other methods demonstrates improved accuracy.

2 Change Detection Framework
The proposed framework employs spatiotemporal features to detect the relevant changes.
This requires three dimensional block-based processing and extends the change detection
problem from comparing two regions to comparing two sets of consecutive regions.

2.1 Spatiotemporal Correlation Analysis
Ordinary change regions are typically correlated in space and/or time among consecutive
frames. This correlation induces spatiotemporal signatures specific to ordinary change pat-
terns. Our goal is to find representation spaces that we can capture spatiotemporal signatures.

2.1.1 Data Decomposition

The data decomposition is needed to divide a frame sequence into subblocks such that local
spatiotemporal signatures can be extracted. Let V denote a sequence of frames, with V =
{F1, . . . ,Ft ,Ft+1, . . . ,FT}. Let Vo be a subset of V, including the frames Fτ for τ = 1, . . . , t.
We are given that the subset Vo contains only ordinary changes. This is a reasonable assump-
tion for the change detection problem, where two states of an entity are under investigation.
The rest of V may contain ordinary changes, relevant changes, or both. Following the same
approach in data compression techniques [29], we divide every frame into regions of 8 by 8
pixels in order to improve the localized correlation. Then, 8 consecutive frames are grouped
to form a stack as shown in Fig. 2. Let § denote the set of stacks, with § = {Sk}K

k=1, where
K = t/8. Every stack is composed of 8× 8× 8 blocks called as cubes (Fig. 2 (b)). Cubes
in the stack Sk are denoted as ck

i j where i = 1, . . . , I, j = 1, . . . ,J, I, and J are the number of
the cubes in vertical and horizontal directions, respectively. After the decomposition, a set
of t frames turns into a set of K stacks, each of which contains I ∗ J cubes. We anticipate
that spatiotemporal signature of each cube in a stack may be unique. We perform a further
grouping for corresponding cubes. Cubes in different stacks are defined as corresponding
cubes if u = p and v = r for cκ1

uv and cκ2
pr , where κ1 6= κ2. We collect corresponding cubes in

sets denoted by Ci j for each i and j as shown in the example in Fig. 2 (c). Namely, the set Vo
becomes an I× J grid of corresponding cube sets. Each Ci j is considered as a summary of
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ordinary change patterns in that local region. We expect the cubes in a corresponding cube
set to share similar spatiotemporal signatures. We now need to estimate a suitable transform
for each corresponding cube set to exploit the spatiotemporal signatures.

(a) (b) (c)

Figure 2: Illustration of data decomposition. Each frame is divided into 8 by 8 regions, and
each 8 consecutive frames are stacked as in (a). Stacking is performed across the frames. S1
denotes the first stack. A stack is composed of 8×8×8 blocks, called cubes. In (b), cubes
in the stack Sk are denoted by ck

i j, where i=1,. . . ,I, j=1,. . . ,J. K is the total number of the
stacks. In (c), we present corresponding cube sets. A corresponding cube set is composed of
corresponding cubes in the different stacks (e.g., CIJ = {c1

IJ , . . . ,c
K
IJ}). We expect the cubes

in a corresponding cube set to share similar spatiotemporal signatures.

2.1.2 Base Transforms

Let us define an I× J matrix T of transforms. An element Ti j of T represents the transform
that is suitable for Ci j. A suitable transform is defined as the one, where transformed values
are independent of one another and the energy is compacted on a few transformed values
regardless of their relative locations. Estimating T is not a straightforward procedure. Or-
thogonal linear transforms redistribute the energy stored in the input and provide compact
representations. Therefore, we employ three orthogonal linear transforms as the base trans-
forms: i) discrete cosine transform (DCT) [3], ii) Walsh-Hadamard transform (WHT) [4],
and iii) Slant transform (ST) [26]. DCT, WHT, and ST are used together because they have
complementary basis vectors that enable the framework to capture different types of ordinary
change patterns. DCT is a sinusoidal transform that is widely used in applications requiring
compact representations [2, 19]. WHT is a non-sinusoidal transform having basis vectors
that are rectangular or square waves; therefore, it can represent patterns with sharp discon-
tinuities more accurately using fewer values than DCT. ST has been successfully applied to
image coding applications [7, 27]. The basis vectors of ST are derived from sawtooth wave-
forms and considered as a good complement to WHT [1]. Depending on the ordinary change
patterns in each set, elements of T are assigned to one of these three base transforms.

2.1.3 Adaptive Transform Estimation for the Ordinary Change Patterns

We call a transform compact if the energy of transformed values does not uniformly scatter
in the representation space. Let D be a set of N real valued numbers, with D = {d1, . . . ,dN}.
Our goal is to estimate the most suitable transform available for D from the collection of
base transforms. In our setting, D refers to a cube in a corresponding cube set. Out of the
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base transforms provided, the most suitable transform for D is the one having transformed
values where the energy is least scattered. Let Ω denote the set of transformed values of D,
with Ω = {ω1, . . . ,ωN}. Let E be the total energy stored in Ω, with E = ∑ωi∈Ω ω2

i . In terms
of energy scattering, the worst case is a uniformly distributed energy across the transformed
values. For such a case, ω2

i = E
N for each i. Let us normalize Ω based on the energy stored

in each transformed value so that E is going to be 1, and accordingly ω2
i , ωi ∈Ω will be 1

N .
We can use this extreme case to define a coefficient that describes how compact the energy
in Ω would be. Let ξs denote the compactness coefficient and Ὼ denote the set of normalized
transformed values, with Ὼ = {ὼ1, . . . , ὼN}. We define ξs as follows:

ξs =
N

∑
i=1

(
1
N
− ὼi

)2

, and ξs ∈ [0,1− 1
N
]. (1)

If a transform can compact all the energy of the input in one single transformed value,
the transform can be considered as the most suitable one for the input. In such a case, only
one element of Ὼ will be 1, while the rest is zero. Accordingly, the value of ξs would be
1− 1

N . On the other hand, when the energy is distributed uniformly, ξs becomes zero. We can
estimate the most suitable transform available for a corresponding cube set Ci j in two steps.
First, we compute compactness coefficients ξ DCT

s , ξWHT
s , and ξ ST

s for the base transforms
for each cube ck

i j in Ci j. Then, the transform having the largest compactness coefficient
value is considered as the most suitable for ck

i j. This results in K transforms for Ci j. Then,
the transform that is the most common amongst estimated K transforms is assigned to Ti j.

2.2 Feature Extraction
Let us call the transformed values as transform coefficients. With a suitable transform, ma-
jority of the coefficients tend to have small values. Our goal is to find a significant subset of
transform coefficients for each corresponding cube set. A significant subset should contain
a small number of coefficients that contribute to the most of the energy.

2.2.1 Significant Transform Coefficients

Several studies using orthogonal transforms assume that the same set of transform coeffi-
cients can be neglected for all types of data [16, 30]. The accuracy of this assumption relies
on the properties of the input, and it may cause loss of distinctive features. Instead, we
propose to estimate a significant subset based on the energy of each coefficient through-
out the cube set. Let Ωk

i j be the set of transform coefficients of a cube ck
i j in Ci j, with

Ωk
i j = {ω

k,s
i j }N

s=1, where N would be 29 for a 8× 8× 8 cube. We first compute Ωk
i j for all

the cubes k = 1, . . . ,K. Second, transform coefficients in every cube are normalized to carry
the unit energy, and we store them in the set Ὼk

i j = {ὼ
k,s
i j }N

s=1. Transform coefficients are
defined as corresponding coefficients if s1 = s2, u = p, and v = r for ω

κ1,s1
uv and ω

κ2,s2
pr ,

where κ1 6= κ2. Let us define a parameter ς s
i j which describes the significance (or average

energy) of the corresponding coefficients ω
k,s
i j in Ci j. ς s

i j is computed for each s as follows:

ς s
i j =

1
K ∑

K
k=1 ὼ

k,s
i j . This results in ς s

i j ∈ [0,1] values, where ∑
N
s=1 ς s

i j = 1. Finally, we use an it-
erative forward selection algorithm [6] to form one significant subset for each corresponding
cube set. We start with no coefficients and add them one by one based on ς s

i j values, at each
step adding the one that stores the most energy, until any further addition does not increase
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the total energy in the subset or increases it only slightly. This generates a significant subset
Ci j = {xl

i j}L
l=1 ,where L << N. Elements of Ci j represent coordinates of the coefficients.

2.2.2 Statistical Features

The advantage of using statistical features compared to strategies assuming a priori para-
metric distribution is that we can distinguish fluctuations due to the fact that the assumed
model may not be valid over the whole input space. A corresponding cube set Ci j is spec-
ified by the estimated base transform Ti j ∈ T and the significant subset Ci j. Let us define
a function L(l,k) that maps coordinates in Ci j to actual coefficient values in the cubes of
Ci j: L(xl

i j,k)→ ω
k,s
i j for l = 1, . . . ,L. One should note that the distribution of each signif-

icant coefficient may be different, and the estimation of each unique distribution is not a
trivial process. Instead, we construct a maximum likelihood model by interpolating from the
training instances. Let M be a I× J matrix of the number of significant coefficients, with
M = {mi j}I,J

i=1, j=1. mi j is the number of significant coefficients in the significant subset Ci j
for the corresponding cube set Ci j. Let ũ denote a vector parameter called unbiased mean.
ũk

i j ∈ Rmi j is defined for the cube k in Ci j. An element ũk,l
i j of ũk

i j is calculated as follows:

ũk,l
i j =

1
K−1

K

∑
κ=1

L(xl
i j,κ) and κ 6= k. (2)

We compute ũk,l
i j for l = 1, . . . ,mi j. We represent each cube in Ci j using values of the coeffi-

cients in the significant subset. Let Ck
i j be a mi j–dimensional vector of significant coefficient

values for the cube ck
i j. We define a deviation vector dk

i j ∈Rmi j , which describes the deviation
of Ck

i j from its unbiased mean ũk
i j as follows: dk

i j = |Ck
i j− ũk

i j|. We calculate standard devia-
tion σ k

i j and mean µk
i j of the elements of dk

i j. Values of Ck
i j, d

k
i j, σ k

i j, and µk
i j for k = 1, . . . ,K

will be used to construct a maximum likelihood model for the relevant change detection.

2.3 Relevant Change Detection
Let us recall the given frame set V = {F1, . . . ,Ft ,Ft+1, . . . ,FT}. We used the subset Vo =
{F1, . . . ,Ft} to estimate spatiotemporal signatures of the ordinary change patterns. We will
analyze the changes in the rest of the frames. Let us assume that we initially process the
first 8 frames {Ft+1, . . . ,Ft+8}. As described in the Sec. 2.1.1, we group them to form the
stack Stest and and decompose the stack into the cubes ctest

i j . We compute the transform
coefficients of ctest

i j using the base transform Ti j ∈ T estimated for the corresponding cube
set Ci j. The significant subset Ci j and mi j ∈M are used along with the mapping function
L(l,k) to construct a mi j−dimensional descriptor Ctest

i j for each i and j. We then compute

the deviation of Ctest
i j from the training samples Ck

i j: dk,test
i j = |Ck

i j −Ctest
i j |, for k = 1, . . . ,K.

We calculate standard deviation σ
k,test
i j and mean µ

k,test
i j of the elements of dk,test

i j . Let X and
Y be two random variables with means µX , µY , standard deviations σX , σY , and correlation
coefficient ρXY . The bivariate inequality of Lal [14] is given by

P(λLX < X < λUX ,λLY < Y < λUY )≥ PXY , and (3)

PXY = 1− 1
2k2

X k2
Y
(k2

X + k2
Y +

√
(k2

X + k2
Y )

2−4ρ2k2
X k2

Y ), (4)
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where λLX +λUX = 2µX , λLY +λUY = 2µY , kX =(λUX −λLX )/2σX , and kY =(λUY −λLY )/2σY .
Eq. 3 gives a lower bound for the joint probability of the interval [λLX ,λUX ] around µX and the
interval [λLY ,λUY ] around µY for the random variables X and Y . We propose that if X and Y
are dependent events, we expect PXY to be large for the same interval [λLX = λLY ,λUX = λUY ]
around µX and µY for X and Y . Accordingly, we define a symmetric interval λLX = λLY =
(µX + µY )/2− 2 ∗ (σX +σY ) and λUX = λUY = (µX + µY )/2+ 2 ∗ (σX +σY ) for X and Y .
We can use the value of PXY to estimate the likelihood of X and Y to be independent random
events. In our change detection setting, if dk,test

i j is found to be independent from dk
i j, we can

conclude that there is a relevant change in ck
i j.

Let elements of the deviation vector dk
i j represent the values of the random variable X

with the mean µk
i j and the standard deviation σ k

i j. Let elements of the deviation vector dk,test
i j

represent the values of the random variable Y with the mean µ
k,test
i j and the standard deviation

σ
k,test
i j . Using Eq. 4, we can compute a joint probability Pk

XY for training stack k. Because
Eq. 3 provides a lower bound but not the actual probability, we can compute PXY for all
training samples by PXY = 1

K ∑
K
k=1 Pk

XY .

2.3.1 Change Detection at Pixel Resolution

When a change having spatiotemporal signature different from ordinary change patterns is
detected in a cube, the proposed method suggests that there may be relevant change within
the regions comprising the cube. At the frame level, this corresponds to a two-dimensional
projection of spatiotemporal changes within the stack of 8 consecutive frames (Fig. 3 (b)).
This summary image is called binary change mask, where 1 and 0 indicate the relevant
and ordinary change, respectively. We use the change mask to analyze the mid-frames in
the stack to avoid large blocking artifacts. For pixel-based detection, we apply the two
dimensional version of the estimated base transform within a window around pixels having
the value of 1 in the change mask and follow the same approach explained above. The block-
based nature of our approach may cause noise at the pixel level. To overcome this limitation,
the resulting change mask is assumed to be a Markov random field. Each pixel is labeled as
either relevant change or ordinary change based on the probability maximization achieved
by the Markov Random Field regularization [24]. We repeat the process by sliding the frame
stack in order to evaluate all frames.

3 Experiments
We obtained 6 test videos from the dynamic background category on ChangeDetection.net
[9]. Videos contain scenes with highly varying elements in the background such as shim-
mering water, fountains, and blowing trees. The dataset includes a comprehensive set of
annotated ground truth change areas to enable a precise quantitative evaluation. Videos are
are named as boats, canoe, f all, f ountain01, f ountaion02, and overpass (Fig 3 (a)-(f)).

3.1 Base Transform Estimation
The proposed method requires the estimation of suitable base transform for different types
of ordinary change patterns. In Table 1, we present the ratio of regions modeled by different
base transforms. The type of the estimated base transform can also be a good descriptor for
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(a) boats (b) canoe (c) fall (d) fountain01 (e) fountain02 (f) overpass

(g) Input frames (h) Change mask (i) Fboats
2000 (j) Output (k) Ground truth

Figure 3: Images (a)-(f): examples of the dynamic backgrounds in the video dataset. In
(h), we present the binary change mask for the 8 consecutive frames in (g). The change
mask is a two-dimensional projection of spatiotemporal changes in these 8 frames. In (i), (j),
and (k), we present input Fboats

2000 , relevant changes detected, and the ground truth. The gray
levels in (k) are 0:ordinary change, 255:relevant change, 85:outside region of interest, and
170:unknown motion [9]. Our goal is to detect pixels labeled as relevant change.

Video Dynamic Background Description Estimated Base Transform (%)
DCT WHT SL

boats shimmering water, blowing bushes 63.75 2.16 34.09
canoe shimmering water, blowing trees 61.00 1.66 37.34
f all blowing trees 55.48 8.92 35.60
f ountain01 fountain, shimmering water 27.00 8.44 64.56
f ountain02 fountain, shimmering water, blowing bushes 36.00 14.81 49.19
overpass shimmering water, blowing trees 52.58 5.16 42.26

Table 1: DCT, WHT, and SL are the base transforms: discrete cosine, Walsh-Hadamard, and
Slant. We present the results of the transform estimation for the backgrounds in the six test
videos. For example, in video boats 63.75% of the frame region is modeled by DCT.

the scene content. For example, DCT is known to have strong energy compaction property
when applied to natural images [29]. In the videos f ountain01 and f ountain02, there is a
notable decrease in the overall use of DCT. This is because of the fountains that jet water
into the air, causing artificial ordinary change patterns. This result stresses the importance of
employing different base transformations with complementary basis vectors.

3.2 Quantitative Evaluation of the Relevant Change Detection

A precise validation of a change detection method requires ground truth at pixel resolution.
Let prc denote a pixel in a region of relevant change, and let poc denote a pixel in a region
of ordinary change. If a change detection method labels prc correctly, this case is called true
positive (TP), and false negative (FN), otherwise. If a change detection method labels poc
as ordinary change, this case is called true negative (TN), and false positive (FP), otherwise.
For the entire test set, a joint probability value PXY less than 0.33 is considered as an evidence
that there is a relevant change. Table 2 shows change detection results at the pixel level.
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boats canoe fountain01 fountain02 overpass fall

Number of Test Frames 6,100 390 785 1,000 2,001 3,001 Average

Specificity (%) 99.961 99.742 99.495 99.952 99.996 99.962 99.833

Accuracy (%) 99.820 99.592 99.387 99.936 99.987 99.889 99.769

Table 2: The proposed method is able to identify ordinary changes with 99.833% specificity.

ChangeDetection.net uses seven metrics to rank different change detection methods. Let
us here present the two of the metrics, Recall (Re) and Precision (Pr), to compare our method
to the other methods under the dynamic background category. The details of all the metrics
and the ranking are presented in [9]. Re and Pr are given by: Re = T P

T P+FN and Pr = T P
T P+FP .

We present the comparison of our method to the three methods having the highest ranking
for the dynamic background category on ChangeDetection.net in Table 3.

Method boats canoe fountain01 fountain02 overpass fall Average

(Ranking) Re Pr Re Pr Re Pr Re Pr Re Pr Re Pr Re Pr

[11] (4.71) 0.63 0.92 0.95 0.79 0.99 0.68 0.80 0.50 0.96 0.86 0.99 0.92 0.89 0.78

[20] (5.71) 0.75 0.82 0.89 0.92 0.82 0.90 0.63 0.15 0.89 0.93 0.94 0.87 0.82 0.76

[12] (6.14) 0.53 0.97 0.79 0.99 0.91 0.89 0.86 0.40 0.86 0.98 0.70 0.92 0.77 0.86

Ours (2.14) 0.78 0.93 0.96 0.93 0.93 0.77 0.81 0.58 0.96 0.98 0.95 0.97 0.90 0.86

Table 3: In this table, we compare Recall (Re) and Precision (Pr) values of the top-three
methods under the dynamic background category on ChangeDetection.net to ours. On the
far left, we provide the rankings of each method. The overall ranking of a method across
seven metrics is computed by taking the average of its ranking for each metric. The overall
ranking of our method is 2.14, and the proposed method outperforms other 23 methods
demonstrated for dynamic background category (ranking results retrieved on June 2013).

4 Conclusion
We have presented a method for the detection of relevant changes in videos with highly vary-
ing elements in the scene background. In dynamic backgrounds, the distinction of relevant
changes from ordinary changes requires exploiting spatial and temporal relationships. We
used orthogonal linear transforms to capture spatiotemporal signatures of the local ordinary
change patterns. Then, the framework employs these signatures in the detection of relevant
changes. The major limitation of our method is that estimating base transforms requires a
set of frames without relevant changes. This a common issue for data-driven approaches.
Another limitation arises from cube-based computations, which may cause blocking arti-
facts. Compared to other methods demonstrated on the same test videos, our method shows
significant improvement in change detection results.
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