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Summary The standard approach to recognizing text in images consists
in first classifying local image regions into candidate characters and then
combining them with high-level word models such as conditional random
fields (CRF). This paper explores a new paradigm that departs from this
bottom-up view.

In our approach, every label from a lexicon is embedded to an Eu-
clidean vector space. We refer to this step as label embedding. Each
vector of image features is then projected to this space. To that end, we
formulate the problem in a structured support vector machine (SSVM)
framework [3] and learn the linear projection that optimizes a proximity
criterion between word images and their corresponding labels: matching
label-image pairs should be closer than non-matching pairs. In this space,
the "compatibility" between a word image and a label is measured sim-
ply as the dot product between their representations. Therefore, given a
new word image, recognition amounts to finding the closest label in the
common space (Fig. 1).

Figure 1: Illustration of recognition with label embedding.

This method presents the following advantages: (i) it does not require
costly pre- or post-processing operations, (ii) it allows for the recognition
of never-seen-before words, (iii) the recognition process is efficient.

Model Let θ : X → RD be a function that acts on the pixels of x and
extracts a D-dimensional feature vector θ(x) (feature embedding).

Let ϕ :Y→RE denote a function that computes a fixed-length feature
vector from the label y (label embedding).

We use the following similarity function between the (projected) im-
age embeddings and the label embeddings :

F(x,y;W ) = θ̃
T (x)ϕ(y) = θ

T (x)Wϕ(y). (1)

If the matrix W is known, recognizing the text in image x amounts to
scanning the lexicon Y for a best match:

ŷ = argmax
y∈Y

F(x,y;W ) (2)

The goal of learning is to find the optimal matrix W .

Embeddings For the image embeddings, we use the widely adopted
bag-of-patches framework. We choose to compute the patch statistics
using the Fisher Vector (FV) principle [4].

For the image embeddings, we propose a Spatial Pyramid of Char-
acters (SPOC). Given a text label, the SPOC counts the frequencies of
character appearances at certain subdivisions of the text label, as illus-
trated in Fig. 2. This embedding is data-free (i.e. any label can be easily
embedded on-the-fly), respects the lexical similarity between words and
is expressed with a fixed-length feature vector.

ABCDE 
Level 1 

Level 2 

Level 3 

[1/5, 1/5, 1/5, 1/5, 1/5] 

[2/5, 2/5, 1/5, 0, 0] [0, 0, 1/5, 2/5, 2/5] 

[4/5, 1/5, 0, 0, 0] [0, 3/5, 2/5, 0, 0] [0, 0, 2/5, 3/5, 0] [0, 0, 0, 1/5, 4/5] 

Figure 2: SPOC label embedding.

Learning We note that Eqs. (1) and (2) can be re-written in the form of
a ranking SSVM with an objective of the form

w∗ = argmin
w

1
N

N

∑
n=1

B2(xn, f (yn))+
λ

2
||w||2, (3)

where

B2(yn, f (xn)) = ∑
y∈Y

∆(yn,y)−F(xn,yn;w)+F(xn,y;w), (4)

which can be optimized with Stochastic Gradient Descent (SGD) [1].

Experiments Experiments are performed on a private license plate recog-
nition dataset and on the IIIT-5K scene text dataset [2] show that the pro-
posed method is competitive with standard bottom-up approaches to text
recognition.
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Figure 3: License plate results. Left: using the whole test set. Right:
Using only the subset of images which have a true match in the database.
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