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Abstract 

 
A novel model for 3D soccer ball tracking is proposed, using multiple fixed 
cameras as input. The main problems are: successfully filtering false alarms, 
tracking through missing observations and estimating 3D positions from 
single or multiple camera inputs. The key innovation is to categorise all 
motion of the ball into four possible phases – rolling, flying, in possession, 
and out of play, and in different phases the ball trajectory is further modelled 
as linear or curve segments. Then, triangulations and phase-specific models 
are employed to estimate 3D ball positions. The system accuracy is evaluated 
by comparing the estimated ball phases and positions with manual ground- 
truth, over several minutes of real data sequences. Unlike existing systems 
using shadows and manual assistance, our approach demonstrates fully 
automatic ball tracking with the potential for accurate and robust results.  
 

 
1  Introduction 
 
As a combination of computer vision and multimedia technologies, many important 
applications have been developed in automatic sports video analysis, especially in 
football video analysis [1-2]. These applications provide additional information for 
better comprehension of football games, such as video content annotation and 
summarization, verification of referee decisions and further 2D/3D reconstruction and 
visualization [1-10].  

Accurate localisation of the positions of players and the ball has several uses, from 
post-match analysis of strategy and fitness to additional low-bandwidth streaming of 
novel spectator content. Naturally, the ball is an important component of this content. 
Although colour and template matching methods have been successfully used in 
detection and tracking of players and referees [1, 4, 7], they are less effective for ball 
detection and tracking due to several reasons [13]: the ball is smaller, often confused 
with parts of players and line markings, suffers rapid and unpredictable 3D acceleration.  

Thus, the problem under investigation is the automatic estimation of ball position 
from multiple fixed cameras. Complete solutions for this problem are not currently 
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available in the literature.  In the football (soccer) domain, fully automatic methods for 
limited scene understanding have been proposed, e.g. recognition of replays  from 
cinematic features extracted from broadcast TV data [1], detection of the ball in 
broadcast TV data [5], and limited ball tracking for selection of optimal viewpoint from 
fixed cameras [3]. Also, sophisticated motion models have been proposed in conjunction 
with semi manual methods for input of measurements: in [7], the 3D ball trajectory is 
modelled by considering air friction and gravity but depends on an unsolved initial 
velocity. Bebie and Bieri model 3D trajectory segments by Hermite spline curves [2], 
yet the ball positions in about every fifth frames need manual identification. Also, in [6] 
and [11], reference players and shadows are used as additional cues to estimate of 3D 
ball positions. These additional cues are not required for the work presented below.  

In this paper, the models and estimators we used are not as sophisticated as some in 
the literature. Rather, the novel contributions are: the definition, recognition, and 
modelling of different phases of ball motion – namely rolling, flying, in-possession, and 
out-of-play, and also 3D ball positioning using triangulations and phase-specific models. 
The phase transitions in ball motion are useful for several reasons. Firstly, it provides a 
helpful means of constraining the model to limit the uncertainty. Secondly, it allows 
further cues to be adopted for recognising the actual motion phases. Finally, it in itself 
provides a useful form of output.  

The approach is as follows: Image data from multiple cameras is processed 
separately to identify the moving objects, and each object is attributed a measure of the 
likelihood of being a ball. From all the cameras, the data about these objects is used to 
estimate the most probable phase of ball motion. In each of the phase transition, the ball 
trajectory is modelled as linear or curve segment. Triangulations and phase-specific 
models are then employed to estimate 3D ball positions and successive phase transitions. 

  

2  Detecting Ball-like Features  
 
2.1 Detecting and Tracking Moving Objects 
 
Image differencing and Kalman-based tracking are applied to generate observations of 
objects moving in the field of view (FOV) of a single camera. Here, an adaptive 
background model, consisting of a per-pixel mixture-of-Gaussians model [12], is used in 
our image differencing operation. Its output is ‘regions’ of connected components, and 
each region i is represented by image plane observation T

i crcrcr ][ 221100=o , 
where ),( 00 cr  is the centroid, ),( 11 cr  and ),( 22 cr  are the top-left and bottom-right corners 
of the bounding box, respectively. 

A simple image plane tracker [9] is used to filter noisy measurements and split 
merged objects. The measurements are represented in common ground plane co-
ordinates, using the Tsai’s method of camera calibration. Until Section 3, all objects are 
assumed to lie on the ground plane (usually true for players, but the ball could be 
anywhere on the line between that point and the camera position). A ground-plane 
measurement T

wwwi ahwzyx ][=m  is defined, where ),,( www zyx  is the 3D object 
position (with initial estimate 0=wz ), and hw,  and a  are width, height and area of the 
object (also expressed in ground plane co-ordinates, assuming it is touching the ground 



   

plane). Figure 1 plots trajectories in ),( 0ct  format from frame 950 to 2100 in camera 
sequence 1, in which frame number t  and image plane co-ordinate 0c  is used.  

 

Figure 1: Thirty seconds of single camera tracking data (Time t moves from left to 
right, and the x-coordinate of the objects c0 is plotted up the y-axis of the Figure) 

 
2.2 Identifying Ball-like Features  
 
The final step in the single-view process is to attribute each of the ground plane 
measurements im  with likelihood )( il m  that it represents the ball. The other objects 
represented by the im  are: the players and referees, moving crowd, and field markings 
erroneously classed as foreground (due to camera shake or luminosity change).  

The naive method of looking for small white objects is to identify an object as a 
likely ball candidate only if its width, height and/or area as well as percentage of pixels 
in white lie within several given thresholds. This is compromised by several problems, 
which we identify and correct for. The first problem is that segmented field lines (such 
as those shown in Fig 2) are also small and white. The second problem is that fragments 
of players, especially socks, are erroneously identified as separate small white objects. 
Third, at this stage its 3D position is still unavailable: its size is calculated by assuming 
it is touching the ground plane. Thus, the airborne ball may appear to be a large object 
on the ground plane. Finally, the image of fast-moving ball is affected by motion blur, 
rendering it larger and less white than a stationary (or slower moving) one.  

   
(a)         (b)              (c)  

Figure 2: Enlarged images of detected moving objects in different colour boxes with the 
ball (in white), players (in blue), and false alarms (in red or yellow). 

In our ball filtering process, velocity and longevity features are introduced to 
discriminate the ball from these other objects along with size and colour information. 
These features are employed in the simple heuristic method described below. A more 
sophisticated method (such as linear discriminant analysis or state vector machines) 
could be employed to greater effect.  

The majority of white field markings of small size and low speed can be 
discriminated from the ball by including thresholds for both the size and absolute 
velocity of the detected object. Parts of players are eliminated by discarding all short-
lived objects and merged them with players accompanied nearby. Cases when the ball is 
calculated to be larger than it really is (either through motion blur or incorrectly 



   

assuming the object lies on the ground plane) are treated by making the thresholds (for 
size and percentage of pixels in ball colour) as functions of the estimated 2D object 
speed, thereby admitting fast-moving objects.  

Indeed, the object speed has been found to be the most useful discriminant of all 
features. After thresholding using size, velocity and colour features, the filtered ball 
candidate are specified with ball likelihood of 0.5. To obtain our floating point measure 
of likelihood il  ranging from 0 to 1, we use two parameters 1k  and 2k  to incorporate the 
velocity v  and longevity n  of the track into the likelihood measure as follows: 
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where v  is the average velocity vector of all detected objects. Figure 3 plots ball 
filtering results using size, velocity, colour and longevity features. 

      
Figure 3: Ball filtering results of Fig. 1 using size, velocity, colour and longevity 

features to indicate the ball (labelled in red) 

After ball filtering, the ball candidates are extracted as T
ww agelyx ][=b , where 

l  and age  are the ball likelihood and longevity. For a possessed ball, b  is still reported 
as the possessor’ s position with 0=l . Then, the most likely ball candidate from each 
camera process is input to the second processing stage, described below in Sections 3, 4 
and 5, wherein these observations are combined to estimate the height, phase and 
trajectory of the motion.  
 

3 Detecting 3D Ball Position and Trajectory 
 
In Section 4 we present a simple yet effective method for recognising the phase of ball 
motion, which requires cues about the height of the ball. In this Section, two methods 
are described for detecting that the ball has left the ground plane, and is following a 3D 
trajectory. The first uses triangulation of multiple sources of data to estimate a 3D 
position; the second uses an analysis of the trajectory from one (or more) data source to 
infer that the ball has left the ground.  
 

3.1 Triangulation from Multiple Sources 
 
Assume the ball is observed from two cameras 1c  and 2c  with projected positions 1b  
and 2b  on the ground plane β . We will make a simple estimate x  of the ball position.  
Let 1l  and 2l  be two lines from 1c  to 1b  and 2c  to 2b , respectively. In practice, 1l  and 

2l  do not intersect due to errors caused by camera calibration and object detection. 
Thus, a simple estimate is calculated by assuming errors from both cameras are likely to 



   

be of the same magnitude, and assigning the estimate x  to be the mid-point of the 
shortest possible line between 1l  and 2l  (see Figure 4).  

To find the shortest possible line, two points 1p  and 2p  are defined to lie on lines 1l  

and 2l  respectively, and it is required that the line 21pp  be a common perpendicular of 

1l  and 2l  [13]. The points 1p  and 2p  can be determined by:  

0)()( =−×− kkkk pccb                                            (2) 

0)()( 21 =−⋅− ppcb kk                                               (3) 

where k ranges over the two line indices {1,2}. The ball position x  is estimated as the 
middle point along 21pp . If the ball is observed in more than two cameras, we first find 
the estimated 3D ball position of each pair of different views, and the final ball position 
x is estimated as the arithmetic mean of these pair-wise estimates. 

Figure 4: 3D ball estimation using 2D ball positions 1b  and 2b   
from cameras situated at 1c  and 2c  

 

3.2 Recognition of 3D Trajectory  
 
When the ball trajectory is observed by only one camera, cues about its height are 
extracted from the shape of its trajectory (as opposed to triangulation). We have found 
two cues to be useful in distinguishing flying from rolling trajectory: first, the detection 
of the projection of a parabolic (curved) trajectory (as opposed to a straight rolling one); 
second, the detection of sudden changes of velocity (bounces) in the absence of players.  

 
4  Recognition of Ball Motion Phases 
 

4.1 Phase Definition 
 
The proposal is to classify the ball motion into one of four categories, or phases. These 
are: rolling (R), flying (F), in-possession (P) and out-of-play (O). These phases were 
chosen because they each require different tracking models, though co-incidentally they 
provide useful insight into the semantic progression of the game. A sequence of play 
was annotated according to these four definitions, and the graph showing these states is 
given in Fig 5. In most cases the progression of play is reasonably straightforward to 
annotate, as a chain of transitions e.g. {P|F|O|P|R|P…} between these four phases. 

β  

1c  

2c  

1b  
2b  

x  1p  

2p  

1l  

2l  



   

However, there are sometimes ambiguities in interpretation, e.g. between flying and 
rolling phases or e.g. how many touches of the ball constitutes a possession.  

For our purposes, it is useful to denote even a single touch of the ball by a player as a 
frame of in-possession phase. This is because in-possession phases act as the non-
deterministic periods that initialise the rolling and flying phases, literally by kicking 
them off in a particular direction. Indeed, the ball trajectories for rolling and flying 
phases are determined by the last kick of a player during the preceding in-possession 
phase (notwithstanding gusts of wind, and other noise processes). Furthermore, the 
pattern of play is punctuated by periods when the ball is out-of-play, e.g. caused by 
fouls, ball crossing touchline, off-side or in-possession by the goal-keeper. Thus, we 
choose to describe the pattern of play as a list of phase-chains, always started by a in-
possession phase, and ending in an out-of-play phase. The phase transition graph for this 
pattern is drawn in Figure 5. 
 
 
 
 
                                      
 

Figure 5: Phase transition graph in soccer ball motion  

As shown in Figure 5, a ball is firstly initialized by a player, and then the ball will 
have phase changes between the four phases. Each phase can last for a certain period of 
time (frames). When a ball is out of play, it will be reinitialized for another cycle of 
phase transitions (CPT). 

Given observations of the ball from separate cameras, and height cues obtained as in 
Section 3, what follows is the estimation of the current ball phase, given the previous 
estimates, and the observations output from each camera. In section 5, specific models 
are described for each of the in-play phases.  
 

4.2 Estimation of Motion Phase 
 
Assume T

kkwkwkk agelyx ][=b  is a 2D ball candidate detected from camera k , 

and ),,( www zyx  is the 3D ball position. For each kb , ][ kg b  equals to true or false 

denoting whether it is between two bouncing points. Then, the ball motion phases are 
simply determined as follows: 

1. A ball is flying if 0zzw >  or trueg
k k =� ][b ;  

2. A ball is rolling if 1zzw < , 0)max( llk >  and falseg
k k =� ][b ; 

3. A ball is in-possession if 1zzw < , 1)max( llk <  and falseg
k k =� ][b ; 

4. A ball is out of play if it cannot be detected in over 0N  frames and the last 

position reported is near the pitch boundary. An out of play ball can be 
reinitialized through several football events like throw-in, corner-kick etc.;  

5. If not belong to all the cases above, a ball is missed (no detected balls) or 
uncertain. However, we may still recover their height, as described in section 5.  

O R F 

P 
init 



   

5 Phase-specific Trajectory Estimates 
 
Finally we describe how the three different models of ball motion are used to provide 
per-frame estimates of ball position. For flying and in-possession motion models, the 
output may lag up to several seconds behind the input observations. This latency is 
necessary in these cases as to have an estimate at frame (t+k), before publishing an 
estimate at frame t.  
 

5.1 Estimating the Trajectory of a Rolling Ball 
 

A rolling ball can be tracked in the ground plane. We assume that the duration of the 
rolling phase is less than the allowed latency, i.e. all observations of the rolling ball are 
available prior to generation of the output. At present we model the rolling ball with a 
simple constant velocity model, i.e. disregarding rolling resistance. It is acknowledged 
that more complex models would be more appropriate, e.g. with a friction term 
proportional to velocity. The model parameters are also estimated simply: the start and 
end positions and times are calculated as the arithmetic mean of all relevant observations 
at those frames. Again, this estimate can be made more robust by including intermediate 
observations, weighted by relative uncertainty.  

 
5.2 Estimating the Trajectory of a Flying Ball  
 
The trajectory of a flying ball is modelled as a set of parabolic curves lying in 
consecutive virtual vertical planes. Each vertical plane is determined by two 3D ball 
positions estimated in section 3, and in each plane, the trajectory segment is 
corresponding to a bounce.  

To estimate the vertical plane, two 3D ball positions are required, which are extracted 
in section 3. Suppose π  is the determined virtual vertical plane, and A  is the projected 
ball position on ground plane β . Given a camera position C, we require a 3D position 
B . Points C ′  and B′  are vertically below C  and B . 
 
 
 
 
 
 
 
 

 
Figure 6: The trajectory is modelled to lie in a vertical plane. Its position in that plane is 

found by locating the point of intersection between that plane and the line AC 

 The 3D ball position B  is estimated in two stages as follows. First, find B′ , defined 
as the intersection of CA ′ and π . Second, calculate B  using the fact that triangles 

CAC ′∆ and BAB ′∆  are similar, and the latter is known completely. Let us define 
),,( pppp zyxX =  as the world coordinates of any point p , then we have: 
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For each parabolic segment, three points (lying in the vertical plane) are used to 
estimate the parameters of this parabola. Similarly to the method proposed for the 
rolling ball, both model and estimate can be made more sophisticated, however, our aim 
is the demonstration of an overall system rather than the refinement of one particular 
component.  
 

5.3 Estimating the Trajectory of an In-Possession Ball  
 

Estimating the trajectory of the football controlled by the player presents two types of 
difficulty. First, unlike the ballistic phases, the trajectory is a continually stochastic 
process which is not easily parameterised. Second, the ball is not observed so frequently, 
as it is often occluded by the player possessing the ball, or another player close by. As a 
consequence, it is necessary to build in some latency into the estimation process: 
sightings of the ball are used to back-track its most likely trajectory, during the time in 
which it was not seen.  

In this case, ground-plane trajectories of the players are used to interpolate the most 
likely trajectory. If the ball was not seen between frames 1k  and 2k , it was most likely 
because it was occluded by a player possessing it. The trajectory is estimated to be that 
of the player closest to the ball position at frame 1k . 

 

6  Evaluation and Results  
 
We have tested the proposed model in over 5500 frames of a multi-camera sequence. 
Two types of evaluation are presented. The first type is to compare the estimated and 
ground-truth (GT) phase estimates, by comparing the recorded transitions, and also the 
frame-by frame labels. The second type is to compare the distance (in metres) between 
estimated and ground-truth ball positions, in which only 2D distance in x-y plane is 
used. All the ground truth ball positions and phases are derived from manual assistance. 

   
Figure 7: Estimated 3D ball trajectory compared with GT and two 2D trajectories. 

Figure 7 gives a complete 3D trajectory history from frame 0 to 954 (left) with two 
2D trajectories at frame 831 in camera 2 and 3 (right), respectively. In the 3D trajectory 



   

graph, several frame numbers are marked to denote some of the phase transition points, 
and player trajectories are also given in black. In eight test sequences of 5500 frames 
each, we have 3D ball positions estimated in about 3700 frames. Regarding the ball is 
out of play in 1131 frames, we can recover over 85% in-play balls in our system, with 
over 90% of them lie within 3m of the ground truth. Considering maximum calibration 
errors of about 2.5m and inaccurate ground truth for flying balls, our system has very 
promising performance in real-time ball tracking.  

A comparison of phase transitions is shown in Fig 8. It can be seen that all except 
one of the phase transitions were successfully detected. The missing one phase transition 
(to a rolling ball) was not detected because there was not a sufficiently clear view of the 
ball during this motion. The second evaluation measure is the distribution of error 
distance between the ground truth label and the estimated position, in which about 92% 
of estimated values lie within 2.5m of the manually recorded position.  

0 1 2 3 4 5 6

accuracy (metres)
 

Figure 8: Phase transition graph in a complete CPT with four y-axis positions represent 
the four phases (Left), and accuracy of our method measured as distance between 

ground-truth and estimate in the ground plane (Right).  

The analysis of the frame-by-frame phases can be presented as a confusion matrix, as 
in Table 1, from which several facts can be observed. Firstly, during the period, in over 
50% of samples, the ball is in-possession; and in 33% of samples the ball is rolling, thus 
2D models can be applied to 83% of cases. Secondly, about 25% rolling and 13% in-
possession balls are misjudged from each other, this happens when a rolling ball cannot 
be observed in a crowd or an in-possession ball is rolling near the player who possessed 
the ball. This affects the accuracy of the ground-truth as well as the estimate from the 
proposed method. Disregarding the confusion between these two phases, the average 
correct rate of phase transitions will increase from 82.6% to 98.3%. Moreover, we can 
also find about 11% flying balls are determined as rolling. One explanation for this is 
that a low-flying ball has a similar appearance to a rolling ball. Calculation of the height 
z is sensitive to errors in camera calibration and motion detection; hence the threshold z0 
has to be tolerant to this error. Heights below z0 will not be recognized correctly.  

Flying Rolling Possessed Out Sum          Results 
GT   frames % frames % frame % frame % frame % 

Flying 56 88.9 7 11.1 0 0.0 0 0.0 63 5.7 
Rolling 3 0.8 273 73.4 96 25.8 0 0.0 372 33.8 
Possessed 1 0.2 77 13.6 480 84.8 8 1.4 566 51.4 
Out 0 0.0 0 0.0 0 0.0 100 100 100 9.1 
Sum 60 5.4 357 32.4 576 52.3 108 9.8 901 100 

Table 1. Quantitative analysis of Figure 8 using ground truth and estimated results. 



   

7  Conclusions 
 
We have presented a model of football motion using distinct phases of trajectory. One 
interesting feature of the approach is that it uses high-level phase transition information 
to aid low-level tracking. Through recognition of four phases, phase-specific models are 
successfully applied in estimating 3D position of the ball. Unlike traditional models, our 
model can fulfil automatic 3D tracking without shadow information and manual 
assistance. 

The results obtained from our model are very encouraging. Simple mechanisms for 
classifying the phase of the ball, and estimating its trajectory, are demonstrated to be 
effective at providing estimate of ball location. There is excellent scope for building 
more sophisticated models for tracking and content-based understanding of soccer and 
other videos into this innovative approach.  
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