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Abstract

Tensor-based approaches for optical flow have been often criticized because
of their limitations in handling large motions. This paper shows how to adapt
them in a multiscale coarse-to-fine strategy. We show how the same ideas
used in the variational framework can be adapted by working with both a
multiscale image sequence as well as a multiscale, motion compensated ten-
sor field. Several experiments are presented in order to compare it to some
recent well known multiscale techniques. We demonstrate how this approach
offers a good compromise between precision and computational efficiency.

1 Introduction

Computing Optical Flow or a deformation field from a sequence of images remains a
crucial problem for many applications in computer vision. In the last twenty years, a lot
of improvements were made since the pioneering work of Horn and Schunck and Lucas
and Kanade (see [3, 2, 16] for some reviews).

The Lucas and Kanade approach, as well as its temporal extension, is based on a least
squares fitting of a local translational flow on a small spatial support. This approach pro-
vides a very fast and local technique for motion estimation. It is in addition robust to
noise, but presents nevertheless several important drawbacks such as delocalization of oc-
clusion edges, difficulty to handle very smooth areas and important motion ranges. These
difficulties have been quite well circumvented by hierarchical coarse-to-fine variational
methods [1, 2, 14, 10] but at the expense of a heavy computational load.

In this paper we propose to adapt such a strategy to Lucas and Kanade-like approaches
in order to handle some of the problems mentioned above. We propose to embed such
an incremental scheme into a Gaussian scale space structure of the data together with a
multiscale scheme which enables us to iteratively refine the spatio-temporal estimation
support. This strategy enables us to rely on an appropriate hierarchy of scale-space data
structure in order to estimate long displacement ranges, and to refine iteratively in a coarse
to fine way the estimation support.

The paper is organized as follows: in section 2 we review some variational and Lucas
and Kanade like approaches, with special focus on large scale motions. Our algorithm
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is presented in section 3 and a link to the work of Nagel et al. is discussed. Section 4
presents a series of experimental evaluations, followed by conclusions in section 5.

2 OFC Based Approaches And Large Motions

Let I : Ω ��� 2 � ������� denotes an image sequence and w 	�
 u � v � 1  T be the displace-
ment vector between the frame at time t and the frame at time t � 1. Most of the apparent
motion recovery algorithms start with the gray level constancy assumption, which means
that the value of a pixel doesn’t change while moving:

I 
 x1 � u � x2 � v � t � 1 �	 I 
 x1 � x2 � t �� (1)

If we are considering small displacements, we can linearize (1) and obtain the optical flow
constraint (OFC) equation

w � ∇I 	 0 (2)

where ∇I is the 3D spatio-temporal gradient of I. This leads to the well known aperture
problem and then additional constraints need to be considered.

2.1 Variational Approaches

One way to solve for the aperture problem is to add some a priori on the solution, such
as smoothness properties. The standard approach is to minimize an energy incorporating
the OFC and a penalty term (some function of the gradients of w) for the smoothness:

minw

�
Ω

 w � ∇I  2 dx �1 dx �2 � �

Ω
φ 
 ∇u � ∇v  dx �1 dx �2 � (3)

Extensive research has been carried out in this direction, in particular to find the suitable
penalty term (see [2] for a review).

Since the OFC becomes usually not valid for large displacements, such schemes have
been embedded into hierarchical schemes to cope with long range motion. Several differ-
ent approaches have been proposed. One may distinguish multiresolution techniques [14]
which rely on a multiresolution pyramid of data, scale-space approaches [1] which use a
scale-space decomposition of the data and multigrid techniques [10] which explore nested
configuration spaces of solutions. All of these schemes rely on an incremental principle
which consists in refining rough solutions iteratively along the levels of the considered
hierarchical structure. More precisely, assuming a known coarse estimation w of the mo-
tion at a given pixel location X 	�
 x1 � x2 � t  , one searches for an update dw 	�
 du � dv � 0  T
such that

I 
 X � w � dw �	 I 
 X �� (4)

The linearization of the above equation provides the so-called shifted OFC equation:

dw � ∇wI 	 0 (5)

where ∇wI is the shifted or motion compensated gradient

∇wI 	��� Ix1 
 X � w 
Ix2 
 X � w 

I 
 X � w �� I 
 X 
�� � (6)



2.2 The Lucas and Kanade Approach

The solution proposed by Lucas and Kanade [9] consists in assuming the optical flow
vector to be constant within a some neighborhood, usually a spatial or spatio-temporal
Gaussian window, if enough temporal information is available ([4]), defined through a
Gaussian kernel h, centered at the location X 	�
 x1 � x2 � t  of estimation and solve for it in
a least square sense, i.e. by finding the minimizers of the local energy function

EX 
 w �	 h � 
 ∇I � w  2 
 X  	 wT h � � ∇I ∇IT � 
 X  w � (7)

The quantity S 	 S 
 X  	 h � � ∇I ∇IT � 
 X  is by definition the Structure Tensor. The
problem to solve is then

Argmin
w ��� u � v� 1 � T EX 
 w �	 wT Sw � (8)

A minimizer w of this energy must satisfy the equation ∇EX 
 w �	 0 which is carried out
by solving the 2 � 2 linear system

∇EX 
 w �		� h � I2
x1

h � Ix1Ix2

h � Ix1Ix2 h � I2
x2 
 � uv 
 ��� h � Ix1It

h � Ix2It 
 	 0 � (9)

These kind of approaches extract the motion from the analysis of the 2D+t structure of
the volume which is coded in the structure tensor. The shape of the window of integration
will determine which 2D+t structures can be successfully coded and so which motions
can be recovered. One needs to find a compromise between having a sufficiently large
kernel to disambiguate the OFC and a small enough one that does not average too much
structures. When multiple range motions have to be estimated, a common kernel for every
speed is not satisfactory (see figure 1).

2.3 Nagel et al. Approach [13, 12, 11]

Nagel et al. have introduced a very interesting algorithm, derived of the Lucas and Kanade
approach, that aims at segmenting the motion field in different categories. This approach
combines both image data smoothing and structure tensor smoothing. The algorithm is
summarized in table 1. The pseudo-inverse operation in table 1, step 2-(c), consists in

1. Σ0
G 
 X �	 diag 
 4 � 4 � 1  . Nagel etal approach (Sec. 2.3)

2. For n 	 0 to N

(a) ∇In 
 X �	 
 I � ∇GΣn
G
�
 X 

(b) T n 
 X  	 � 
 ∇In  
 ∇In  T � GΣMn
� 
 X  , Σn

M � 2Σn
G

(c) Σn � 1
G 
 X  	 a pseudo-inverse of T n 
 X 

3. Output motion segmentation from analysis of the tensor field T N

Table 1: Nagel et al. algorithm



remapping in a strictly positive range the eigenvalues of T n 
 X  , using a bounded decreas-
ing function. A major drawback of this method is its high running time due mainly to all
the convolutions with non-separable Gaussian kernels. We will see in section 3.2 that our
proposed algorithm uses, in a rough sense, a simplification of this one.

3 Using Shifted Structure Tensors

3.1 A Coarse To Fine Strategy

Within an incremental coarse-to-fine strategy (4-5), assuming the update dw constant on
a Gaussian neighborhood of X , we can built a least squares solution at X exactly as in
(8)-(9). The incremental field dw is given at each point as the minimizer of the quadratic
energy

Ew 
 dw �	 dwT Swdw (10)

where Sw 	�� 
 ∇wI  � ∇wIT ��� is a shifted or motion compensated structure tensor. The
final motion field w is a sum of piecewise constant approximations of the flow with the
first estimates constituting roughly the principal components of the motion field whereas
the last increments figure detail corrections. Such a description of this scheme acting by
successive refinements needs to use decreasing estimation support. Sufficiently large Hes-
sian supports are used to estimate rough average motion components whereas final detail
corrections are estimated on a much smaller support. Low frequency space solutions are
first exhibited and are then completed by high frequency details.

This finally suggests the following coarse to fine strategy: choose an integer N � 0
and a sequence 
 τn

s � τn
t  , n 	 0 � � � N, such that τk � 1

s � τk
s , τk � 1

t � τk
t and let hk denote the

spatio-temporal Gaussian kernel with spatial standard deviation τk
s and temporal standard

deviation τk
t . We then propose the algorithm in table 3 (upper part) which is somewhat

close with the work presented in section 2.3. Indeed, step 2-(a) of their algorithm (in ta-
ble 1) computes gradients giving higher weights in the spatio-temporal direction of mini-
mal variations of grey-levels, i.e. in the motion direction, therefore performing an implicit
motion compensation. While we do it explicitly, the loop 2 of their algorithm corresponds
to an iterative refining approach.

1. Set wN � 1 � 0. Coarse-to-fine approach (Sec. 3.1)

2. For n 	 N down to 0

� Form the shifted structure tensor Swn � 1 
 X �	 hk �
	 ∇wn � 1
I ��	 ∇wn � 1

IT � 
 X � Compute the update dwn as the minimum of the quadratic energy
Ewn � 1 
 dw � Set wn 	 wn � 1 � dwn

3. Output w0.

Table 2: Synopsis of the coarse to fine approach



1. Set wK � 1 � 0 	 0. Multiscale coarse-to-fine approach (Sec. 3.2)

2. For k 	 K downto 0

(a) Compute Ik 	 gk � I

(b) wk � N � 1 	 wk � 1 � 0
(c) For n 	 N downto 0� Form the shifted structure tensor

Swk � n � 1 
 X  	 hk � 	 ∇wk � n � 1
Ik � 	 ∇wk � n � 1

IT
k � 
 X � Compute dwk � n as the minimum of the quadratic energy Ewk � n � 1 
 dw � Set wk � n 	 wk � n � 1 � dwk � n

3. Output w0 � 0.

Table 3: Coarse-to-fine multiscale tensor-based motion estimation

3.2 Incorporating a Multiscale Framework

We describe here a multiscale algorithm coupling these two strategies: let K a positive
integer, we define two family of Gaussian kernels:

� gk, k 	 K � � � 0, with spatio-temporal standard deviations 
 σk
s � σk

t  so that 
 σk
s � σk

t  �
 σk � 1
s � σk � 1

t  . This will be used to smooth of the image data.

� hkn, k 	 K � � � 0, n 	 N � � � 0, with standard spatio-temporal deviations 
 τk � n
s � τk � n

t 
such that 
 τk � n

s � τk � n
t  � 
 τk � n � 1

s � τk � n � 1
t  . This will be used for the least squares esti-

mates of the motion update vectors.

We also require that 
 τk � 0
s � τk � 0

t  � 
 σk
s � σk

t  which states that the minimal aperture at a given
image scale for forming the structure tensors must be sufficiently larger than the one used
to smooth the image data, otherwise the extracted gradients will be too well aligned in the
chosen neighborhood, and we might be in presence of the aperture problem.

This algorithm is shown in table 3. Standard central differences are used for the
spatial derivatives, and Gaussian filtering is approximated by Deriche recursive filters
[7]. In order to compute the values I 
 X � w  we use bilinear interpolation. The standard
deviation sequences used are exponential: given α � 1, βk � 1, we set
 σk

s � σk
t  	 αk 
 σ0

s � σ0
t �� 
 τk � n

s � τk � n
t  	 βn

k 
 τk � 0
s � τk � 0

t ��
4 Experiments

Our algorithm has been implemented in C++ on a 1.6Ghz Pentium IV processor. In all
experiments but the last, we have used K 	 N 	 3 � σ0

s 	 1 � 0 � σ0
s 	 0 � 5 � τk � 0

s 	 3 � 0 � τk � 0
t 	

1 � 5 � α 	 βk 	 �
2. Interestingly the approach is not so sensitive to changes in the pyramids



levels (as soon as we start from coarse enough scale) which is an advantage with respect
to multiresolution schemes that can lead to quite different results with different scales.

The proposed method, denoted CFLS (Coarse to Fine Least Squares) is compared
with the new variational algorithm by Brox et. al. [5] (denoted BBPW), which provides
some of the best results known so far, and with the multiscale variational approach by
Aubert et. al. [2] (denoted ADK).

We first comment some experiments using several synthetic image sequences where
the ground truth is known. The following measurements have been estimated (see [3]):
AAE (the average angular error), AESTD (the angular error standard deviation), ANE
(the average norm error) and NESTD (norm error standard deviation), RT (running time).

Different aspects have been evaluated. In addition, we have computed orientation
images, for some of the sequences, the orientation represented by a color, and the used
color code is indicated by a small band at the image boundary.

(a) The ability to recover a large range of motions (Figures 1 and 2). This sequence
consists of five stacked translating patterns at different speeds (20, 13, 7, 4 and 2 pixels
per frame leftward). Figure 1-(a) shows one frame of the sequence, 1-(b) the true flow and
1-(c) shows that using the original Lucas and Kanade approach with several homogeneous
Gaussian kernels doesn’t allow to recover the different ranges of motions and discontinu-
ities. The graph in figure 2-(a) and the table 2-(c) allow to compare the different methods.
BBPW is clearly better as shown in figure 2-(a), which represents a vertical cut of the
velocities for x 	 34. Figure 2-(b) illustrates the refining behavior of estimations in our
algorithm (locations indicated by the spots in figure 1-(a)).

(b) Robustness to noise (Figure 3). This sequence is of dimensions 170 � 255 � 20
pixels, has a leftward 10 pixels per frames motion, but is heavily contaminated by non
stationnary noise: the frames are divided in 3 rectangles with Gaussian noise of stan-
dard deviation 35% for the upper one, 58% for the middle one and 86% for the bottom
one. Figure 3)-(b) is the true flow, and figure 3)-(c) shows very good computed motion
orientations, although severe errors (overestimates) are present at the left boundary.

(c) Dealing with diverging motions (Figure 4). This sequence is a zoom in, with
respect to the image center. Figure 4-(b) represents the true flow and figure 4-(c) repre-
sents velocity norms cuts for the red diagonal of figure 4-(b). Figure 4-(d),(e),(f) compare
the true flow to the ones computed using respectively BBWP, ADK and our method. We
capture reasonably the motion range and runs much faster than BBPW and ADK.

(d) Dealing with rotational motions (Figure 6). This sequence is a 4 � counterclock-
wise rotation, with respect to the image center. Figure 6-(b) represents the true flow. Fig-
ure 6-(c),(d),(e) compare the true flow to the ones computed using respectively BBWP,
ADK and our method. BBPW returns the best results, ADK gives also very good results,
and our algorithm is a bit less accurate but much faster.

(e) Recovering motion with occlusions (Figure 5). This real sequence shows a boat
moving slighly to the right while the background is moving leftward. Although the two
variational methods BBWP and ADK give slightly better edges, we are able capture cor-
rectly the two motions.

5 Conclusion

This paper demonstrates that a linear tensor-based approach can be successfully extended
in a multiscale framework and estimate high range velocities robustly. The computational
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Figure 1: Multispeed sequence (21 frames of size 170 � 425)
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Algorithm AAE AESTD ANE NESTD RT

BBPW [5] 0.67 � 0.81 � 0.30 0.14 17mn
ADK [2] 1.37 � 1.02 � 0.51 0.15 11mn40s

CFLS 1.43 � 0.62 � 1.60 2.90 1mn35s

Figure 2: Multispeed sequence: (a) Vertical cuts of the velocitiy norms, (b) evolution of
velocities across scales, at position x 	 85, t 	 4 and y as shown in figure 1, (c) error
measurements.

(a) frame 4 (b) wTrue (c) Orientations computed (d) wTrue � wCFLS

Figure 3: Robustness to noise (21 frames of size 170 � 255). Error measurements are
respectively AAE = 1.65 � , AESTD = 0.62 � , ANE = 2.20, NESTD = 0.62.
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Algorithm AAE AESTD ANE NESTD RT

BBPW [5] 0.69 � 0.23 � 0.46 0.09 13mn
ADK [2] 6.74 � 3.47 � 3.65 0.81 � 40mn

CFLS 3.01 � 1.58 � 3.94 1.59 2mn30s

Figure 4: Zooming sequence (21 frames of size 334 � 334). Error measurements are re-
ported above.

q
Image 2 Image 5 Image 8

wBBPW(9mn) wADK(13mn) wCFLS(1mn30)

Figure 5: Real sequence with occlusions (10 frames of size 352 � 240). Flow orientation
is shown below for image 5 which gives a basic object segmentation. Computaional time
is indicated between parentheses.



(a) Frame 5 (b) wTrue

(d) wTrue � wBBPW (e) wTrue � wADK (f) wTrue � wCFLS

Algorithm AAE AESTD ANE NESTD RT

BBPW [5] 0.22 � 0.21 � 0.08 0.12 9mn
ADK [2] 0.56 � 0.94 � 0.18 0.27 10mn45s

CFLS 1.38 � 1.40 � 0.44 0.59 1mn45s

Figure 6: Rotation sequence (15 frames of size 334 � 334). Error measurements are re-
ported above.

coast is also quite low when compared to classical variational approaches since there is
no need to ”iterate until convergence”.

One main drawback for this kind of approaches remains the recovery of accurate oc-
cluding boundaries. More accurate techniques could surely be proposed incorporating
some kind of motion discontinuity detection at coarsest scales. Such process could be
implicitly included considering a robust cost function instead of the quadratic norm. Oth-
erwise, one advantage that hasn’t been taken fully into acount yet is that these approaches
introduce naturally some error measurements (for exampe the system condition number)
that could be used as a confidence measure for the velocities. These issues will be con-
sidered next.
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